Computer-aided design of metal chalcohalide semiconductors: from chemical composition to crystal structure† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc03961a

The standard paradigm in computational materials science is INPUT: Structure; OUTPUT: Properties, which has yielded many successes but is ill-suited for exploring large areas of chemical and configurational hyperspace.

[1]  Andrew I. Cooper,et al.  Functional materials discovery using energy–structure–function maps , 2017, Nature.

[2]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[3]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[4]  Anubhav Jain,et al.  New Light‐Harvesting Materials Using Accurate and Efficient Bandgap Calculations , 2015 .

[5]  Felix A Faber,et al.  Machine Learning Energies of 2 Million Elpasolite (ABC_{2}D_{6}) Crystals. , 2015, Physical review letters.

[6]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[7]  G. N. Baum,et al.  Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry , 2013 .

[8]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[9]  B. Meredig,et al.  Materials science with large-scale data and informatics: Unlocking new opportunities , 2016 .

[10]  Gerbrand Ceder,et al.  Predicting crystal structure by merging data mining with quantum mechanics , 2006, Nature materials.

[11]  Anubhav Jain,et al.  Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory , 2010 .

[12]  Marco Buongiorno Nardelli,et al.  High-throughput computational screening of thermal conductivity, Debye temperature, and Grüneisen parameter using a quasiharmonic Debye model , 2014, 1407.7789.

[13]  Douglas A. Keszler,et al.  Inverse Design of High Absorption Thin‐Film Photovoltaic Materials , 2013 .

[14]  Corey Oses,et al.  Materials Cartography: Representing and Mining Material Space Using Structural and Electronic Fingerprints , 2014, 1412.4096.

[15]  Linus Pauling,et al.  THE NATURE OF THE CHEMICAL BOND. IV. THE ENERGY OF SINGLE BONDS AND THE RELATIVE ELECTRONEGATIVITY OF ATOMS , 1932 .

[16]  Taylor D. Sparks,et al.  Data-Driven Review of Thermoelectric Materials: Performance and Resource Considerations , 2013 .

[17]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[18]  Taylor D. Sparks,et al.  High-Throughput Machine-Learning-Driven Synthesis of Full-Heusler Compounds , 2016 .

[19]  Kristin A. Persson,et al.  First principles high throughput screening of oxynitrides for water-splitting photocatalysts , 2013 .

[20]  Wei Chen,et al.  A computational assessment of the electronic, thermoelectric, and defect properties of bournonite (CuPbSbS3) and related substitutions. , 2017, Physical chemistry chemical physics : PCCP.

[21]  Alok Choudhary,et al.  Combinatorial screening for new materials in unconstrained composition space with machine learning , 2014 .

[22]  Anubhav Jain,et al.  Data mined ionic substitutions for the discovery of new compounds. , 2011, Inorganic chemistry.

[23]  Isao Tanaka,et al.  Distributions of phonon lifetimes in Brillouin zones , 2015, 1501.00691.

[24]  Bryce Meredig,et al.  Data mining our way to the next generation of thermoelectrics , 2016 .

[25]  Anubhav Jain,et al.  The Materials Application Programming Interface (API): A simple, flexible and efficient API for materials data based on REpresentational State Transfer (REST) principles , 2015 .

[26]  Thomas F. Jaramillo,et al.  New cubic perovskites for one- and two-photon water splitting using the computational materials repository , 2012 .

[27]  Christopher H. Hendon,et al.  Electroactive Nanoporous Metal Oxides and Chalcogenides by Chemical Design , 2017, Chemistry of materials : a publication of the American Chemical Society.

[28]  Stefano Curtarolo,et al.  High-throughput electronic band structure calculations: Challenges and tools , 2010, 1004.2974.

[29]  Stefano Curtarolo,et al.  High-throughput combinatorial database of electronic band structures for inorganic scintillator materials. , 2011, ACS combinatorial science.

[30]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[31]  Isao Tanaka,et al.  First-principles phonon calculations of thermal expansion in Ti3SiC2, Ti3AlC2, and Ti3GeC2 , 2010 .

[32]  Aron Walsh,et al.  Thermal physics of the lead chalcogenides PbS, PbSe, and PbTe from first principles , 2014, 1405.6290.

[33]  Engineering,et al.  Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques , 2016 .

[34]  Kristian S Thygesen,et al.  Two-Dimensional Metal Dichalcogenides and Oxides for Hydrogen Evolution: A Computational Screening Approach. , 2015, The journal of physical chemistry letters.

[35]  Nikolaus Hansen,et al.  USPEX - Evolutionary crystal structure prediction , 2006, Comput. Phys. Commun..

[36]  Yoyo Hinuma,et al.  Band structure diagram paths based on crystallography , 2016 .

[37]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[38]  Yoyo Hinuma,et al.  Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis , 2016, Nature Communications.

[39]  A. Oganov,et al.  Crystal structure prediction using ab initio evolutionary techniques: principles and applications. , 2006, The Journal of chemical physics.

[40]  D. Keszler,et al.  Atomic solid state energy scale. , 2011, Journal of the American Chemical Society.

[41]  Nripan Mathews,et al.  Lead-free germanium iodide perovskite materials for photovoltaic applications , 2015 .

[42]  Liping Yu,et al.  Identification of potential photovoltaic absorbers based on first-principles spectroscopic screening of materials. , 2012, Physical review letters.

[43]  Sanguthevar Rajasekaran,et al.  Accelerating materials property predictions using machine learning , 2013, Scientific Reports.

[44]  Aron Walsh,et al.  Computational Screening of All Stoichiometric Inorganic Materials , 2016, Chem.

[45]  C. Greaves,et al.  The structures of Li5BiO5 and Li5SbO5 from powder neutron diffraction , 1989 .

[46]  P. Madden,et al.  Lithium intercalation into TiO2(B): A comparison of LDA, GGA, and GGA+U density functional calculations , 2012 .

[47]  S. Ong,et al.  The thermodynamic scale of inorganic crystalline metastability , 2016, Science Advances.

[48]  Gangjian Tan,et al.  Rationally Designing High-Performance Bulk Thermoelectric Materials. , 2016, Chemical reviews.

[49]  D. Keszler,et al.  Atomic solid state energy scale: Universality and periodic trends in oxidation state , 2015 .

[50]  Artur F Izmaylov,et al.  Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.

[51]  James Theiler,et al.  Materials Prediction via Classification Learning , 2015, Scientific Reports.

[52]  Charles C. Sorrell,et al.  Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects , 2002 .

[53]  Svetlozar Nestorov,et al.  The Computational Materials Repository , 2012, Computing in Science & Engineering.

[54]  Olexandr Isayev,et al.  Material informatics driven design and experimental validation of lead titanate as an aqueous solar photocathode , 2016 .

[55]  Thomas Olsen,et al.  Computational screening of perovskite metal oxides for optimal solar light capture , 2012 .

[56]  Anubhav Jain,et al.  Understanding thermoelectric properties from high-throughput calculations: trends, insights, and comparisons with experiment , 2016 .

[57]  G. Pilania,et al.  Machine learning bandgaps of double perovskites , 2016, Scientific Reports.

[58]  S. Woodley,et al.  Crystal structure prediction from first principles. , 2008, Nature materials.