Low-Shot Learning of Plankton Categories

The size of current plankton image datasets renders manual classification virtually infeasible. The training of models for machine classification is complicated by the fact that a large number of classes consist of only a few examples. We employ the recently introduced weight imprinting technique in order to use the available training data to train accurate classifiers in absence of enough examples for some classes.

[1]  Jian Cheng,et al.  NormFace: L2 Hypersphere Embedding for Face Verification , 2017, ACM Multimedia.

[2]  Allen R. Hanson,et al.  Automatic In Situ Identification of Plankton , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[3]  Luca Antiga,et al.  Automatic differentiation in PyTorch , 2017 .

[4]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[5]  Laurens van der Maaten,et al.  Submanifold Sparse Convolutional Networks , 2017, ArXiv.

[6]  P. Culverhouse,et al.  Automatic classification of field-collected dinoflagellates by artificial neural network , 1996 .

[7]  G. Gorsky,et al.  The Underwater Vision Profiler 5: An advanced instrument for high spatial resolution studies of particle size spectra and zooplankton , 2010 .

[8]  R. Cowen,et al.  In situ ichthyoplankton imaging system (ISIIS): system design and preliminary results , 2008 .

[9]  Jessica Y. Luo,et al.  Imperfect automatic image classification successfully describes plankton distribution patterns , 2016 .

[10]  Mark C. Benfield,et al.  An empirical assessment of the consistency of taxonomic identifications , 2014 .

[11]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[12]  Matthew A. Brown,et al.  Low-Shot Learning with Imprinted Weights , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[13]  Hongyu Li,et al.  Quantifying California current plankton samples with efficient machine learning techniques , 2015, OCEANS 2015 - MTS/IEEE Washington.

[14]  R. Olson,et al.  A submersible imaging‐in‐flow instrument to analyze nano‐and microplankton: Imaging FlowCytobot , 2007 .

[15]  Kyungmin Kim,et al.  Face Generation for Low-Shot Learning Using Generative Adversarial Networks , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[16]  Marc Picheral,et al.  Digital zooplankton image analysis using the ZooScan integrated system , 2010 .

[17]  Trevor Darrell,et al.  Best Practices for Fine-Tuning Visual Classifiers to New Domains , 2016, ECCV Workshops.

[18]  Gabriela Csurka,et al.  Distance-Based Image Classification: Generalizing to New Classes at Near-Zero Cost , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Matthijs Douze,et al.  Low-Shot Learning with Large-Scale Diffusion , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[20]  Shi Zhongzhi,et al.  Plankton classification with deep convolutional neural networks , 2016, 2016 IEEE Information Technology, Networking, Electronic and Automation Control Conference.

[21]  Robert J. Olson,et al.  Automated taxonomic classification of phytoplankton sampled with imaging‐in‐flow cytometry , 2007 .

[22]  Oscar Beijbom,et al.  Transfer Learning and Deep Feature Extraction for Planktonic Image Data Sets , 2017, 2017 IEEE Winter Conference on Applications of Computer Vision (WACV).

[23]  Reinhard Koch,et al.  Particulate matter flux interception in oceanic mesoscale eddies by the polychaete Poeobius sp. , 2018, Limnology and Oceanography.

[24]  Jianfeng Zhan,et al.  Cosine Normalization: Using Cosine Similarity Instead of Dot Product in Neural Networks , 2017, ICANN.

[25]  Bharath Hariharan,et al.  Low-Shot Visual Recognition by Shrinking and Hallucinating Features , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[26]  Hansang Lee,et al.  Plankton classification on imbalanced large scale database via convolutional neural networks with transfer learning , 2016, 2016 IEEE International Conference on Image Processing (ICIP).

[27]  Eugenio Culurciello,et al.  An Analysis of Deep Neural Network Models for Practical Applications , 2016, ArXiv.