Precoloring Extension III: Classes of Perfect Graphs

We continue the study of the following general problem on the vertex colourings of graphs. Suppose that some vertices of a graph G are assigned to some colours. Can this ‘precolouring’ be extended to a proper colouring of G with at most k colours (for some given k )? Here we investigate the complexity status of precolouring extendibility on some classes of perfect graphs, giving good characterizations (necessary and sufficient conditions) that lead to algorithms with linear or polynomial running time. It is also shown how a larger subclass of perfect graphs can be derived from graphs containing no induced path on four vertices.

[1]  Zsolt Tuza,et al.  Precoloring extension. I. Interval graphs , 1992, Discret. Math..

[2]  Z. Tuza,et al.  PRECOLORING EXTENSION. II. GRAPHS CLASSES RELATED TO BIPARTITE GRAPHS , 1993 .

[3]  Zsolt Tuza,et al.  Algorithmic complexity of list colorings , 1994, Discret. Appl. Math..

[4]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[5]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[6]  D. Koenig Theorie Der Endlichen Und Unendlichen Graphen , 1965 .

[7]  Klaus Jansen,et al.  Generalized Coloring for Tree-like Graphs , 1992, WG.

[8]  Peter L. Hammer,et al.  Difference graphs , 1990, Discret. Appl. Math..

[9]  L. Lovász,et al.  Polynomial Algorithms for Perfect Graphs , 1984 .

[10]  J. K. Il Precoloring Extension with Fixed Color Bound , 1994 .

[11]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[12]  L. Lovász A Characterization of Perfect Graphs , 1972 .

[13]  Lorna Stewart,et al.  A Linear Recognition Algorithm for Cographs , 1985, SIAM J. Comput..

[14]  D. R. Fulkerson,et al.  Blocking and anti-blocking pairs of polyhedra , 1971, Math. Program..

[15]  Z. Tuza,et al.  Dominating cliques in P5-free graphs , 1990 .

[16]  Paul D. Seymour,et al.  Extending an edge-coloring , 1990, J. Graph Theory.

[17]  L. Vietoris Theorie der endlichen und unendlichen Graphen , 1937 .

[18]  F. Harary,et al.  Two graph-colouring games , 1993, Bulletin of the Australian Mathematical Society.

[19]  Martin Charles Golumbic,et al.  Perfect Elimination and Chordal Bipartite Graphs , 1978, J. Graph Theory.

[20]  Andrzej Kisielewicz,et al.  Polynomial density of commutative semigroups , 1993, Bulletin of the Australian Mathematical Society.

[21]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[22]  Klaus Jansen,et al.  Generalized Coloring for Tree-like Graphs , 1992, Discret. Appl. Math..

[23]  Derek G. Corneil,et al.  Complement reducible graphs , 1981, Discret. Appl. Math..

[24]  Klaus Jansen,et al.  Scheduling with Incompatible Jobs , 1992, WG.

[25]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .