Mobile robot for retail inventory using RFID

The use of RFID technology is increasing in retail stores, because it improves the performance of automated checkout, inventory and theft detection systems. In this paper, we present a novel implementation of a mobile robot that can perform retail inventory autonomously. The robot can autonomously generate a path to cover all the merchandise within the boundaries of a given store map, and then it can perform the inventory by following the generated path. Experimental results show that our robot can efficiently perform RFID based inventory on a sales floor with complex layout, and provides inventory accuracy that compares favorably to manual inventory.

[1]  Yoram Koren,et al.  Real-time obstacle avoidance for fast mobile robots in cluttered environments , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[2]  H. Stockman,et al.  Communication by Means of Reflected Power , 1948, Proceedings of the IRE.

[3]  Christian Floerkemeier,et al.  Inventory Management with an RFID-equipped Mobile Robot , 2007, 2007 IEEE International Conference on Automation Science and Engineering.

[4]  Yangsheng Xu,et al.  Development of a hospital service robot for transporting task , 2003, IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, 2003. Proceedings. 2003.

[5]  Hans P. Moravec Sensor Fusion in Certainty Grids for Mobile Robots , 1988, AI Mag..

[6]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[7]  Michael Brady,et al.  A bayesian approach to real-time obstacle avoidance for a mobile robot , 1995, Auton. Robots.

[8]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Dong Sam Ha,et al.  An overview of passive RFID , 2007, IEEE Communications Magazine.

[10]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[11]  Daniel M. Dobkin,et al.  The RF in RFID: Passive UHF RFID in Practice , 2007 .

[12]  Vladimir J. Lumelsky,et al.  Dynamic path planning in sensor-based terrain acquisition , 1990, IEEE Trans. Robotics Autom..

[13]  G. Swaminathan Robot Motion Planning , 2006 .

[14]  Malcolm David Macnaughtan,et al.  Positioning GSM telephones , 1998, IEEE Commun. Mag..

[15]  H.T. Friis,et al.  A Note on a Simple Transmission Formula , 1946, Proceedings of the IRE.

[16]  Shiwen Mao,et al.  PhaseFi: Phase Fingerprinting for Indoor Localization with a Deep Learning Approach , 2014, 2015 IEEE Global Communications Conference (GLOBECOM).

[17]  Raúl Parada,et al.  Enhancing the shopping experience through RFID in an actual retail store , 2013, UbiComp.

[18]  Sander Oude Elberink,et al.  Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications , 2012, Sensors.

[19]  Viii Supervisor Sonar-Based Real-World Mapping and Navigation , 2001 .

[20]  Yoram Koren,et al.  The vector field histogram-fast obstacle avoidance for mobile robots , 1991, IEEE Trans. Robotics Autom..

[21]  K. V. S. Rao,et al.  Phase based spatial identification of UHF RFID tags , 2010, 2010 IEEE International Conference on RFID (IEEE RFID 2010).

[22]  Ieee Xplore,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Information for Authors , 2022, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Howie Choset,et al.  Coverage for robotics – A survey of recent results , 2001, Annals of Mathematics and Artificial Intelligence.

[24]  Shiwen Mao,et al.  CSI-Based Fingerprinting for Indoor Localization: A Deep Learning Approach , 2016, IEEE Transactions on Vehicular Technology.

[25]  Chee-Keng Yap,et al.  A "Retraction" Method for Planning the Motion of a Disc , 1985, J. Algorithms.

[26]  Gaetano Borriello,et al.  Location Systems for Ubiquitous Computing , 2001, Computer.

[27]  Graham Hine,et al.  The Wave Glider: A Wave-Powered autonomous marine vehicle , 2009, OCEANS 2009.

[28]  F.H. Raab,et al.  High-efficiency linear amplification by dynamic load modulation , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[29]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[30]  Andreas Zell,et al.  Integrated Scenario for Machine-Aided Inventory Using Ambient Sensors , 2008 .

[31]  D. Dobkin The RF in RFID : UHF RFID in Practice Ed. 2 , 2012 .

[32]  Maja J. Mataric,et al.  An architecture for rehabilitation task practice in socially assistive human-robot interaction , 2010, 19th International Symposium in Robot and Human Interactive Communication.

[33]  Ernest L. Hall,et al.  Region filling operations for mobile robot using computer graphics , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[34]  Baris Fidan,et al.  Localization Algorithms and Strategies for Wireless Sensor Networks: Monitoring and Surveillance Techniques for Target Tracking , 2009 .

[35]  Kurt Konolige,et al.  The Office Marathon: Robust navigation in an indoor office environment , 2010, 2010 IEEE International Conference on Robotics and Automation.

[36]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[37]  B. Eissfeller,et al.  A Two-Stage Fuzzy Logic Approach for Wireless LAN Indoor Positioning , 2006, 2006 IEEE/ION Position, Location, And Navigation Symposium.

[38]  Juha-Pekka Makela,et al.  Indoor geolocation science and technology , 2002, IEEE Commun. Mag..

[39]  B.D. Van Veen,et al.  Beamforming: a versatile approach to spatial filtering , 1988, IEEE ASSP Magazine.

[40]  Shiwen Mao,et al.  DeepFi: Deep learning for indoor fingerprinting using channel state information , 2015, 2015 IEEE Wireless Communications and Networking Conference (WCNC).

[41]  Joseph Kee-Yin Ng,et al.  Providing location services within a radio cellular network using ellipse propagation model , 2005, 19th International Conference on Advanced Information Networking and Applications (AINA'05) Volume 1 (AINA papers).

[42]  A. Raman,et al.  Execution: The Missing Link in Retail Operations , 2001 .

[43]  Sharethram Hariharan,et al.  Improving dynamic decision making through RFID: A partially observable Markov decision process (POMDP) for RFID-enhanced warehouse search operations , 2006 .

[44]  John R. Spletzer,et al.  An Automated Asset Locating System (AALS) with Applications to Inventory Management , 2009, FSR.

[45]  Nando de Freitas,et al.  Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks , 2000, UAI.

[46]  P. Fearnhead,et al.  Improved particle filter for nonlinear problems , 1999 .

[47]  Prathima Agrawal,et al.  CA2T: Cooperative Antenna Arrays Technique for Pinpoint Indoor Localization , 2014, FNC/MobiSPC.

[48]  William Woodall “Moe” The Autonomous Lawnmower , 2012 .

[49]  A. Davids Urban search and rescue robots: from tragedy to technology , 2002 .

[50]  Paul Little Try It, You'll Like It , 1972 .

[51]  Bjorn Ottersten,et al.  Exact and Large Sample ML Techniques for Parameter Estimation and Detection in Array Processing , 1993 .

[52]  B. T. Fang,et al.  Simple solutions for hyperbolic and related position fixes , 1990 .

[53]  Dieter Fox,et al.  KLD-Sampling: Adaptive Particle Filters and Mobile Robot Localization , 2001, NIPS 2001.