3D-rigid objects motion segmentation: a study of practical limitations

Motion segmentation or recovering structure-and-motion (SaM) from images of dynamic scenes plays a significant role in many computer-vision applications ranging from local navigation of a mobile robot to image rendering for multimedia applications. Since in many applications, the exact type of motion and camera parameters are not known, a priori, the fundamental matrix is commonly used as a general motion model. Although the estimation of a fundamental matrix and its use for motion segmentation are well understood, the studies of conditions governing the feasibility of segmentation for different types of motions are largely unaddressed. In this thesis, the feasibility of motion segmentation using the fundamental matrix is analysed. The focus is on a scene including multiple SaMs viewed by an uncalibrated camera. The quantifiable measures for the degree of separation were theoretically derived for the types of motion that are usually seen in practical applications, namely, motion from background, translational motions and planar motions. Sets of condition to guarantee successful segmentation were proposed via extensive experiments, the design of which was based on the Monte Carlo statistical method, using synthetic images. Experiments using real image data were set up and executed to examine the relevance of those conditions to the problems encountered in real applications. The experimental results show the capability of the proposed conditions to correctly predict the outcome of several segmentation scenarios. In addition, they also show that the Monte Carlo experimental results are very relevant to the problems encountered in real applications. In practice, the success of motion segmentation could

[1]  S. Shankar Sastry,et al.  Two-View Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix , 2002 .

[2]  P. Torr Geometric motion segmentation and model selection , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[3]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  S. Shankar Sastry,et al.  Optimal segmentation of dynamic scenes from two perspective views , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[5]  Paul A. Beardsley,et al.  Sequential Updating of Projective and Affine Structure from Motion , 1997, International Journal of Computer Vision.

[6]  Paul L. Rosin Robust pose estimation , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[7]  Jiri Matas,et al.  Optimal Randomized RANSAC , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Paul A. Beardsley,et al.  Affine Calibration of Mobile Vehicles , 1995 .

[9]  Gang Xu,et al.  Epipolar Geometry in Stereo, Motion and Object Recognition , 1996, Computational Imaging and Vision.

[10]  Rajiv Gupta,et al.  Stereo from uncalibrated cameras , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[11]  Richard I. Hartley,et al.  Euclidean Reconstruction from Uncalibrated Views , 1993, Applications of Invariance in Computer Vision.

[12]  David Suter,et al.  Robust Optic Flow Computation , 1998, International Journal of Computer Vision.

[13]  H. C. Longuet-Higgins,et al.  A computer algorithm for reconstructing a scene from two projections , 1981, Nature.

[14]  Peter Meer,et al.  Beyond RANSAC: User Independent Robust Regression , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[15]  Olivier D. Faugeras,et al.  What can be seen in three dimensions with an uncalibrated stereo rig , 1992, ECCV.

[16]  O. D. Faugeras,et al.  Camera Self-Calibration: Theory and Experiments , 1992, ECCV.

[17]  Michael Brady,et al.  Saliency, Scale and Image Description , 2001, International Journal of Computer Vision.

[18]  Philip H. S. Torr,et al.  IMPSAC: Synthesis of Importance Sampling and Random Sample Consensus , 2000, ECCV.

[19]  Andrew Zisserman,et al.  Motion From Point Matches Using Affine Epipolar Geometry , 1994, ECCV.

[20]  Michael Werman,et al.  Duality of Multi-Point and Multi-Frame Geometry: Fundamental Shape Matrices and Tensors , 1996, ECCV.

[21]  Richard Szeliski,et al.  Systems and Experiment Paper: Construction of Panoramic Image Mosaics with Global and Local Alignment , 2000, International Journal of Computer Vision.

[22]  O. Faugeras,et al.  On determining the fundamental matrix : analysis of different methods and experimental results , 1993 .

[23]  Alireza Bab-Hadiashar,et al.  Bridging Parameter and Data Spaces for Fast Robust Estimation in Computer Vision , 2008, 2008 Digital Image Computing: Techniques and Applications.

[24]  Thierry Viéville,et al.  Using Singular Displacements for Uncalibrated Monocular Visual Systems , 1996, ECCV.

[25]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[26]  S. P. Mudur,et al.  Three-dimensional computer vision: a geometric viewpoint , 1993 .

[27]  René Vidal,et al.  A Unified Algebraic Approach to 2-D and 3-D Motion Segmentation and Estimation , 2006, Journal of Mathematical Imaging and Vision.

[28]  David Suter,et al.  Robust segmentation of visual data using ranked unbiased scale estimate , 1999, Robotica.

[29]  Richard I. Hartley,et al.  In Defense of the Eight-Point Algorithm , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Roland Mech,et al.  A noise robust method for 2D shape estimation of moving objects in video sequences considering a moving camera , 1998, Signal Process..

[31]  S. Shankar Sastry,et al.  Generalized principal component analysis (GPCA) , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Philip H. S. Torr,et al.  The Development and Comparison of Robust Methods for Estimating the Fundamental Matrix , 1997, International Journal of Computer Vision.

[33]  Yiannis Aloimonos,et al.  Perspective approximations , 1990, Image Vis. Comput..

[34]  C. Schmid,et al.  Scale-invariant shape features for recognition of object categories , 2004, CVPR 2004.

[35]  Peter Meer,et al.  Heteroscedastic Projection Based M-Estimators , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[36]  David W. Murray,et al.  Guided Sampling and Consensus for Motion Estimation , 2002, ECCV.

[37]  C. Stiller,et al.  Estimating Motion in Image Sequences A tutorial on modeling and computation of 2 D motion , 2022 .

[38]  S. Shankar Sastry,et al.  Two-View Multibody Structure from Motion , 2005, International Journal of Computer Vision.

[39]  Haifeng Chen,et al.  Robust regression with projection based M-estimators , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[40]  Lior Wolf,et al.  Two-body segmentation from two perspective views , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[41]  S. Basah,et al.  Conditions for motion-background segmentation using fundamental matrix , 2009, DICTA 2009.

[42]  Mark S. Nixon,et al.  Feature Extraction & Image Processing, Second Edition , 2008 .

[43]  Andrew Zisserman,et al.  MLESAC: A New Robust Estimator with Application to Estimating Image Geometry , 2000, Comput. Vis. Image Underst..

[44]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[45]  Jens Klappstein,et al.  Detectability of Moving Objects Using Correspondences over Two and Three Frames , 2007, DAGM-Symposium.

[46]  Charles V. Stewart,et al.  Bias in robust estimation caused by discontinuities and multiple structures , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  Philip H. S. Torr,et al.  Stochastic Motion Clustering , 1994, ECCV.

[48]  Adam Krzyzak,et al.  Robust Estimation for Range Image Segmentation and Reconstruction , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Richard I. Hartley,et al.  Projective Reconstruction and Invariants from Multiple Images , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  Azriel Rosenfeld,et al.  Robust regression methods for computer vision: A review , 1991, International Journal of Computer Vision.

[51]  Steven S. Beauchemin,et al.  The computation of optical flow , 1995, CSUR.

[52]  S. Shankar Sastry,et al.  An Invitation to 3-D Vision , 2004 .

[53]  Narendra Ahuja,et al.  Motion and Structure From Two Perspective Views: Algorithms, Error Analysis, and Error Estimation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[54]  Olivier D. Faugeras,et al.  The fundamental matrix: Theory, algorithms, and stability analysis , 2004, International Journal of Computer Vision.

[55]  M. Evans,et al.  Statistical Distributions, Third Edition , 2001 .

[56]  Olivier Faugeras,et al.  3D Dynamic Scene Analysis , 1992 .

[57]  Andrew Zisserman,et al.  Motion Clustering using the Trilinear Constraint over Three Views , 1995 .

[58]  Paul A. Beardsley,et al.  Robust Vision , 1994, BMVC.

[59]  Rae-Hong Park,et al.  Robust Adaptive Segmentation of Range Images , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[60]  Andrew Zisserman,et al.  Robust Detection of Degenerate Configurations while Estimating the Fundamental Matrix , 1998, Comput. Vis. Image Underst..

[61]  Alireza Bab-Hadiashar,et al.  Conditions for Segmentation of Motion with Affine Fundamental Matrix , 2009, ISVC.

[62]  Gerhard Roth,et al.  Segmentation of geometric signals using robust fitting , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[63]  Andrew Zisserman,et al.  Geometric invariance in computer vision , 1992 .

[64]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[65]  David Suter,et al.  Two-View Multibody Structure-and-Motion with Outliers through Model Selection , 2006, IEEE Trans. Pattern Anal. Mach. Intell..

[66]  René Vidal,et al.  Motion Segmentation with Missing Data Using PowerFactorization and GPCA , 2004, CVPR.

[67]  Salman Valibeik,et al.  Segmentation and Tracking for Vision Based Human Robot Interaction , 2008, 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[69]  David Nistér,et al.  Preemptive RANSAC for live structure and motion estimation , 2005, Machine Vision and Applications.

[70]  Philip H. S. Torr,et al.  Statistical detection of independent movement from a moving camera , 1993, Image Vis. Comput..

[71]  C. Schmid,et al.  Indexing based on scale invariant interest points , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[72]  Thomas S. Huang,et al.  Theory of Reconstruction from Image Motion , 1992 .

[73]  Takeo Kanade,et al.  Shape and motion from image streams under orthography: a factorization method , 1992, International Journal of Computer Vision.

[74]  Michael Spann,et al.  Robust Optical Flow Computation Based on Least-Median-of-Squares Regression , 1999, International Journal of Computer Vision.

[75]  Alireza Bab-Hadiashar,et al.  A Novel Hierarchical Technique for Range Segmentation of Large Building Exteriors , 2007, ISVC.

[76]  Peter Meer,et al.  Robust regression for data with multiple structures , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[77]  R. Hoseinnezhad,et al.  A Novel High Breakdown M-estimator for Visual Data Segmentation , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[78]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[79]  James V. Miller,et al.  MUSE: robust surface fitting using unbiased scale estimates , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[80]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[81]  Andrew Zisserman,et al.  3D Motion recovery via affine Epipolar geometry , 1995, International Journal of Computer Vision.

[82]  Konrad Schindler,et al.  Perspective n-View Multibody Structure-and-Motion Through Model Selection , 2006, ECCV.

[83]  Yi Ma,et al.  A new GPCA algorithm for clustering subspaces by fitting, differentiating and dividing polynomials , 2004, CVPR 2004.

[84]  Xavier Armangué,et al.  Overall view regarding fundamental matrix estimation , 2003, Image Vis. Comput..

[85]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[86]  David Suter,et al.  Robust Fitting by Adaptive-Scale Residual Consensus , 2004, ECCV.

[87]  Sing Bing Kang,et al.  Emerging Topics in Computer Vision , 2004 .

[88]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[89]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[90]  Alireza Bab-Hadiashar,et al.  Conditions for Segmentation of 2D Translations of 3D Objects , 2009, ICIAP.

[91]  Lei Chen,et al.  Stereo Vision Based Floor Plane Extraction and Camera Pose Estimation , 2009, ICIRA.

[92]  Andrew W. Fitzgibbon,et al.  The Problem of Degeneracy in Structure and Motion Recovery from Uncalibrated Image Sequences , 1999, International Journal of Computer Vision.

[93]  Ilan Shimshoni,et al.  Balanced Exploration and Exploitation Model Search for Efficient Epipolar Geometry Estimation , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[94]  David Suter,et al.  A Model-Selection Framework for Multibody Structure-and-Motion of Image Sequences , 2007, International Journal of Computer Vision.

[95]  Paul A. Beardsley,et al.  3D Model Acquisition from Extended Image Sequences , 1996, ECCV.

[96]  Richard I. Hartley,et al.  Estimation of Relative Camera Positions for Uncalibrated Cameras , 1992, ECCV.

[97]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[98]  Alireza Bab-Hadiashar,et al.  Limits of Motion-Background Segmentation Using Fundamental Matrix Estimation , 2008, 2008 Digital Image Computing: Techniques and Applications.

[99]  Zhengyou Zhang,et al.  Determining the Epipolar Geometry and its Uncertainty: A Review , 1998, International Journal of Computer Vision.

[100]  Stefan Carlsson,et al.  Duality of reconstruction and positioning from projective views , 1995, Proceedings IEEE Workshop on Representation of Visual Scenes (In Conjunction with ICCV'95).

[101]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[102]  Rajiv Gupta,et al.  Linear Pushbroom Cameras , 1994, ECCV.

[103]  Charles V. Stewart,et al.  Robust Parameter Estimation in Computer Vision , 1999, SIAM Rev..

[104]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[105]  Charles V. Stewart,et al.  MINPRAN: A New Robust Estimator for Computer Vision , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[106]  Alireza Bab-Hadiashar,et al.  Consistency of robust estimators in multi-structural visual data segmentation , 2007, Pattern Recognit..

[107]  Alexandru Tupan,et al.  Triangulation , 1997, Comput. Vis. Image Underst..

[108]  Richard Szeliski,et al.  An integrated Bayesian approach to layer extraction from image sequences , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[109]  Guojun Lu,et al.  Segmentation of moving objects in image sequence: A review , 2001 .

[110]  P. Holland,et al.  Robust regression using iteratively reweighted least-squares , 1977 .

[111]  David Suter,et al.  Robust adaptive-scale parametric model estimation for computer vision , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[112]  David Suter,et al.  Finite Sample Bias of Robust Estimators in Segmentation of Closely Spaced Structures: A Comparative Study , 2010, Journal of Mathematical Imaging and Vision.

[113]  P. J. Huber Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .

[114]  Olivier D. Faugeras,et al.  The geometry of multiple images - the laws that govern the formation of multiple images of a scene and some of their applications , 2001 .

[115]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[116]  Jake K. Aggarwal,et al.  On the computation of motion from sequences of images-A review , 1988, Proc. IEEE.