Cancer Cell Inhibitory Autophosphorylation of RAF Kinase in vitro and in cells

Matthew Holderfield,1 Hanne Merritt,1 John Chan,1 Marco Wallroth,1 Laura Tandeske,1 Huili Zhai,2 John Tellew,3 Stephen Hardy,1 Mohammad Hekmat-Nejad,1 Darrin D. Stuart,1,* Frank McCormick,4 and Tobi E. Nagel1 1Novartis Institutes for Biomedical Research, Emeryville, CA 94608, USA 2Novartis Institutes for Biomedical Research, Cambridge, CA 02139, USA 3Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA 4Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA *Correspondence: darrin.stuart@novartis.com http://dx.doi.org/10.1016/j.ccr.2013.03.033

[1]  A. Hauschild,et al.  Atypical melanocytic proliferations and new primary melanomas in patients with advanced melanoma undergoing selective BRAF inhibition. , 2012, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[2]  A. von Deimling,et al.  Distinct requirement for an intact dimer interface in wild‐type, V600E and kinase‐dead B‐Raf signalling , 2012, The EMBO journal.

[3]  Alma L. Burlingame,et al.  A Raf-induced allosteric transition of KSR stimulates phosphorylation of MEK , 2011, Nature.

[4]  D. Morrison,et al.  RAF Inhibitor-Induced KSR1/B-RAF Binding and Its Effects on ERK Cascade Signaling , 2011, Current Biology.

[5]  U. Rapp,et al.  Single Substitution within the RKTR Motif Impairs Kinase Activity but Promotes Dimerization of RAF Kinase* , 2011, The Journal of Biological Chemistry.

[6]  S. Nelson,et al.  Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation , 2010, Nature.

[7]  Damien Kee,et al.  Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. , 2010, Cancer cell.

[8]  K. Flaherty,et al.  Inhibition of mutated, activated BRAF in metastatic melanoma. , 2010, The New England journal of medicine.

[9]  J. Dering,et al.  Pharmacodynamic characterization of the efficacy signals due to selective BRAF inhibition with PLX4032 in malignant melanoma. , 2010, Neoplasia.

[10]  R. Radinsky,et al.  Selective and Potent Raf Inhibitors Paradoxically Stimulate Normal Cell Proliferation and Tumor Growth , 2010, Molecular Cancer Therapeutics.

[11]  M. Belvin,et al.  RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth , 2010, Nature.

[12]  Chao Zhang,et al.  RAF inhibitors transactivate RAF dimers and ERK signaling in cells with wild-type BRAF , 2010, Nature.

[13]  J. Reis-Filho,et al.  Kinase-Dead BRAF and Oncogenic RAS Cooperate to Drive Tumor Progression through CRAF , 2010, Cell.

[14]  Marc Therrien,et al.  A dimerization-dependent mechanism drives RAF catalytic activation , 2009, Nature.

[15]  G. Schwartz,et al.  A phase I study of XL281, a selective oral RAF kinase inhibitor, in patients (Pts) with advanced solid tumors. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[16]  Kam Y. J. Zhang,et al.  Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity , 2008, Proceedings of the National Academy of Sciences.

[17]  M. Noble,et al.  How Tyrosine 15 Phosphorylation Inhibits the Activity of Cyclin-dependent Kinase 2-Cyclin A* , 2007, Journal of Biological Chemistry.

[18]  T. Graeber,et al.  Phosphorylation of the ATP-binding loop directs oncogenicity of drug-resistant BCR-ABL mutants , 2006, Proceedings of the National Academy of Sciences.

[19]  K. Hemminki,et al.  BRAF and NRAS mutations are frequent in nodular melanoma but are not associated with tumor cell proliferation or patient survival. , 2005, The Journal of investigative dermatology.

[20]  D. Barford,et al.  Mechanism of Activation of the RAF-ERK Signaling Pathway by Oncogenic Mutations of B-RAF , 2004, Cell.

[21]  A. Nicholson,et al.  Mutations of the BRAF gene in human cancer , 2002, Nature.

[22]  K. Guan,et al.  Positive and negative regulation of Raf kinase activity and function by phosphorylation , 2001, The EMBO journal.

[23]  F. McCormick,et al.  Activation of c‐Raf‐1 by Ras and Src through different mechanisms: activation in vivo and in vitro , 1997, The EMBO journal.

[24]  T. Traut,et al.  Physiological concentrations of purines and pyrimidines , 1994, Molecular and Cellular Biochemistry.

[25]  D. Morrison,et al.  Critical tyrosine residues regulate the enzymatic and biological activity of Raf-1 kinase , 1993, Molecular and cellular biology.

[26]  Kathleen L. Gould,et al.  Tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis , 1989, Nature.

[27]  D. Beach,et al.  Reversible tyrosine phosphorylation of cdc2: Dephosphorylation accompanies activation during entry into mitosis , 1989, Cell.

[28]  E. Jonasch,et al.  Cutaneous squamous cell carcinoma and inflammation of actinic keratoses associated with sorafenib. , 2009, Clinical genitourinary cancer.

[29]  W. Kolch,et al.  Protein kinase C alpha activates RAF-1 by direct phosphorylation. , 1993, Nature.