Selected Aspects of Natural Computing

In this chapter we will discuss a selection of application areas in which natural computation shows its value in real-world enterprises. For the purposes of demonstrating the significant impact and potential of natural computation in practice, there is certainly no shortage of documented examples that could be selected. We present just ten applications, ranging from specific problems to specific domains, and ranging from cases familiar to the authors to highlights known well in the general natural computation community. Each displays the proven promise or great potential of nature-inspired computation in high-profile and important real-world applications, and we hope that these applications inspire both students and practitioners.

[1]  Phil McMinn,et al.  Hybridizing Evolutionary Testing with the Chaining Approach , 2004, GECCO.

[2]  Phil McMinn,et al.  The State Problem for Evolutionary Testing , 2003, GECCO.

[3]  Xin Yao,et al.  Estimation of distribution algorithms for testing object oriented software , 2007, 2007 IEEE Congress on Evolutionary Computation.

[4]  Shigenobu Kobayashi,et al.  Edge Assembly Crossover: A High-Power Genetic Algorithm for the Travelling Salesman Problem , 1997, ICGA.

[5]  T. W. E. Lau,et al.  SUPER‐HEURISTICS AND THEIR APPLICATIONS TO COMBINATORIAL PROBLEMS , 1999 .

[6]  J. S. Hunter,et al.  Statistics for Experimenters: Design, Innovation, and Discovery , 2006 .

[7]  Xin Yao,et al.  Innovative Batik Design with an Interactive Evolutionary Art System , 2009, Journal of Computer Science and Technology.

[8]  Kalyanmoy Deb,et al.  A classical-cum-Evolutionary Multi-objective optimization for optimal machining parameters , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[9]  S. N. Kramer,et al.  An Augmented Lagrange Multiplier Based Method for Mixed Integer Discrete Continuous Optimization and Its Applications to Mechanical Design , 1994 .

[10]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[11]  Mark S. Fox,et al.  Intelligent Scheduling , 1998 .

[12]  D. Kell,et al.  Array-based evolution of DNA aptamers allows modelling of an explicit sequence-fitness landscape , 2008, Nucleic acids research.

[13]  A. Messac,et al.  Normal Constraint Method with Guarantee of Even Representation of Complete Pareto Frontier , 2004 .

[14]  Phyllis G. Frankl,et al.  The ASTOOT approach to testing object-oriented programs , 1994, TSEM.

[15]  Marney Colin Fyfe Heather Tarbert David Miller Jp,et al.  Risk Adjusted Returns to Technical Trading Rules: a Genetic Programming Approach , 2001 .

[16]  David B. Fogel,et al.  Evolving neural networks to play checkers without relying on expert knowledge , 1999, IEEE Trans. Neural Networks.

[17]  Joachim Wegener,et al.  Evolutionary unit testing of object-oriented software using strongly-typed genetic programming , 2006, GECCO '06.

[18]  Andrew W. Lo,et al.  Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation , 2000 .

[19]  A. Ravindran,et al.  Engineering Optimization: Methods and Applications , 2006 .

[20]  Corina S. Pasareanu,et al.  Test input generation for java containers using state matching , 2006, ISSTA '06.

[21]  Shu-Heng Chen,et al.  Genetic Algorithms and Genetic Programming in Computational Finance , 2002 .

[22]  Robert L. Shaw,et al.  Fighter Combat: Tactics and Maneuvering , 1985 .

[23]  Michael Ellims,et al.  The Economics of Unit Testing , 2006, Empirical Software Engineering.

[24]  Julian F. Miller,et al.  Genetic and Evolutionary Computation — GECCO 2003 , 2003, Lecture Notes in Computer Science.

[25]  STEVEN MINTON,et al.  A reply to Zito-Wolf's book review ofLearning search control knowledge: An explanation-based approach , 2004, Machine Learning.

[26]  John H. Holland,et al.  Induction: Processes of Inference, Learning, and Discovery , 1987, IEEE Expert.

[27]  Arthur L. Samuel,et al.  Some studies in machine learning using the game of checkers , 2000, IBM J. Res. Dev..

[28]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[29]  H. Handa,et al.  Robust route optimization for gritting/salting trucks: a CERCIA experience , 2006, IEEE Computational Intelligence Magazine.

[30]  Toby Walsh,et al.  Towards an Understanding of Hill-Climbing Procedures for SAT , 1993, AAAI.

[31]  Graham Kendall,et al.  A Hyperheuristic Approach to Scheduling a Sales Summit , 2000, PATAT.

[32]  Bart Selman,et al.  Noise Strategies for Improving Local Search , 1994, AAAI.

[33]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[34]  David B. Fogel,et al.  Evolution, neural networks, games, and intelligence , 1999, Proc. IEEE.

[35]  David B. Fogel,et al.  Blondie24: Playing at the Edge of AI , 2001 .

[36]  John J. Grefenstette,et al.  Credit assignment in rule discovery systems based on genetic algorithms , 1988, Machine Learning.

[37]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[38]  R. J. Gilbert,et al.  Efficient Improvement of Silage Additives by Using Genetic Algorithms , 2000, Applied and Environmental Microbiology.

[39]  George E. P. Box,et al.  Evolutionary Operation: a Method for Increasing Industrial Productivity , 1957 .

[40]  Peter Ross,et al.  Learning a Procedure That Can Solve Hard Bin-Packing Problems: A New GA-Based Approach to Hyper-heuristics , 2003, GECCO.

[41]  Bart Selman,et al.  Evidence for Invariants in Local Search , 1997, AAAI/IAAI.

[42]  Yaochu Jin,et al.  Knowledge incorporation in evolutionary computation , 2005 .

[43]  Gregg Rothermel,et al.  Proceedings of the 2004 ACM SIGSOFT international symposium on Software testing and analysis , 2004 .

[44]  Evelyne Lutton,et al.  Evolution of Fractal Shapes for Artists and Designers , 2006, Int. J. Artif. Intell. Tools.

[45]  Anthony Brabazon,et al.  Biologically inspired algorithms for financial modelling , 2006, Natural computing series.

[46]  Penousal Machado,et al.  The Art of Artificial Evolution , 2008 .

[47]  Joshua D. Knowles,et al.  Closed-loop, multiobjective optimization of analytical instrumentation: gas chromatography/time-of-flight mass spectrometry of the metabolomes of human serum and of yeast fermentations. , 2005, Analytical chemistry.

[48]  P. Coveney,et al.  Combinatorial searches of inorganic materials using the ink-jet printer: science, philosophy and technology , 2001 .

[49]  Douglas B. Kell,et al.  In silico modelling of directed evolution: Implications for experimental design and stepwise evolution. , 2009, Journal of theoretical biology.

[50]  Joshua D. Knowles Closed-loop evolutionary multiobjective optimization , 2009, IEEE Computational Intelligence Magazine.

[51]  Christopher J. Neely Risk-adjusted, ex ante, optimal technical trading rules in equity markets , 2003 .

[52]  Michael O'Neill,et al.  Biologically Inspired Algorithms for Financial Modelling (Natural Computing Series) , 2005 .

[53]  Karl Sims,et al.  Artificial evolution for computer graphics , 1991, SIGGRAPH.

[54]  Toby Walsh,et al.  Proceedings of AAAI-96 , 1996 .

[55]  Xin Yao,et al.  Dynamic salting route optimisation using evolutionary computation , 2005, 2005 IEEE Congress on Evolutionary Computation.

[56]  Alessandro Orso,et al.  Automated Testing of Classes , 2000, ISSTA '00.

[57]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms in Engineering Applications , 1997, Springer Berlin Heidelberg.

[58]  Hector J. Levesque,et al.  A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.

[59]  P. J. Fleming,et al.  The good of the many outweighs the good of the one: evolutionary multi-objective optimization , 2003 .

[60]  Xin Yao,et al.  Search based software testing of object-oriented containers , 2008, Inf. Sci..

[61]  David B. Fogel,et al.  Evolving an expert checkers playing program without using human expertise , 2001, IEEE Trans. Evol. Comput..

[62]  Martin J. Oates,et al.  Fitness Gains and Mutation Patterns: Deriving Mutation Rates by Exploiting Landscape Data , 2002, FOGA.

[63]  Paul J. Layzell,et al.  Analysis of unconventional evolved electronics , 1999, CACM.

[64]  David Notkin,et al.  Rostra: a framework for detecting redundant object-oriented unit tests , 2004 .

[65]  David W. Corne,et al.  Discovering effective technical trading rules with genetic programming: towards robustly outperforming buy-and-hold , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[66]  Joshua D. Knowles,et al.  ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems , 2006, IEEE Transactions on Evolutionary Computation.

[67]  Alex S. Fukunaga,et al.  Automated Discovery of Local Search Heuristics for Satisfiability Testing , 2008, Evolutionary Computation.

[68]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[69]  Xin Yao,et al.  A Memetic Algorithm for test data generation of Object-Oriented software , 2007, 2007 IEEE Congress on Evolutionary Computation.

[70]  Boris Beizer,et al.  Software Testing Techniques , 1983 .

[71]  G. Cowles Studies of Mascarene Island birds: The fossil record , 1987 .

[72]  David W. Corne,et al.  Outperforming Buy-and-Hold with Evolved Technical Trading Rules: Daily, Weekly and Monthly Trading , 2010, EvoApplications.

[73]  A. El-Fallah,et al.  Discovering Novel Fighter Combat Maneuvers , 2001 .

[74]  Mark Harman,et al.  Improving Evolutionary Testing By Flag Removal , 2002, GECCO.

[75]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[76]  Graham Kendall,et al.  Hyperheuristics: A Robust Optimisation Method Applied to Nurse Scheduling , 2002, PPSN.

[77]  Kalyanmoy Deb,et al.  Real-coded Genetic Algorithms with Simulated Binary Crossover: Studies on Multimodal and Multiobjective Problems , 1995, Complex Syst..

[78]  Mukund Seshadri,et al.  GP-evolved Technical Trading Rules Can Outperform Buy and Hold , 2003 .

[79]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[80]  Colin Fyfe,et al.  Technical analysis versus market efficiency - a genetic programming approach , 1999 .

[81]  Ender Özcan,et al.  A comprehensive analysis of hyper-heuristics , 2008, Intell. Data Anal..

[82]  Peter Ross,et al.  Solving a Real-World Problem Using an Evolving Heuristically Driven Schedule Builder , 1998, Evolutionary Computation.

[83]  Michel Juillard,et al.  Computing in economics and finance , 2003 .

[84]  Colin Fyfe,et al.  Technical Trading Versus Market Efficiency-A Genetic Programming Approach , 2000 .

[85]  Peter Ross,et al.  A Heuristic Combination Method for Solving Job-Shop Scheduling Problems , 1998, PPSN.

[86]  H. Chernoff Sequential Analysis and Optimal Design , 1987 .

[87]  Graham Kendall,et al.  Hyper-Heuristics: An Emerging Direction in Modern Search Technology , 2003, Handbook of Metaheuristics.

[88]  Kalyanmoy Deb,et al.  Integrating User Preferences into Evolutionary Multi-Objective Optimization , 2005 .

[89]  Gerald DeJong,et al.  Learning Search Control Knowledge for Deep Space Network Scheduling , 1993, ICML.

[90]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[91]  Ingo Rechenberg,et al.  Case studies in evolutionary experimentation and computation , 2000 .

[92]  Paolo Tonella,et al.  Evolutionary testing of classes , 2004, ISSTA '04.

[93]  Edmund K. Burke,et al.  Parallel Problem Solving from Nature - PPSN IX: 9th International Conference, Reykjavik, Iceland, September 9-13, 2006, Proceedings , 2006, PPSN.

[94]  Peter J. Bentley,et al.  CREATIVE EVOLUTIONARY SYSTEMS , 2001 .

[95]  Sarfraz Khurshid,et al.  Korat: automated testing based on Java predicates , 2002, ISSTA '02.

[96]  Peter J. Angeline,et al.  Genetic programming's continued evolution , 1996 .

[97]  David E. Goldberg,et al.  The Design of Innovation: Lessons from and for Competent Genetic Algorithms , 2002 .

[98]  R. A. Fisher,et al.  Design of Experiments , 1936 .

[99]  Glenford J. Myers,et al.  Art of Software Testing , 1979 .

[100]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[101]  Martin J. Oates,et al.  PESA-II: region-based selection in evolutionary multiobjective optimization , 2001 .

[102]  Robert E. Smith,et al.  Classifier systems in combat: two-sided learning of maneuvers for advanced fighter aircraft , 2000 .

[103]  Eckart Zitzler,et al.  Are All Objectives Necessary? On Dimensionality Reduction in Evolutionary Multiobjective Optimization , 2006, PPSN.

[104]  Bogdan Korel,et al.  Automated Software Test Data Generation , 1990, IEEE Trans. Software Eng..

[105]  Cheng Siong Lee,et al.  GP-based optimisation of technical trading indicators and profitability in FX market , 2002, Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02..

[106]  Hideyuki Takagi,et al.  User Fatigue Reduction by an Absolute Rating Data-trained Predictor in IEC , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[107]  James C. King,et al.  Symbolic execution and program testing , 1976, CACM.

[108]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[109]  Jonathan Schaeffer,et al.  One jump ahead - challenging human supremacy in checkers , 1997, J. Int. Comput. Games Assoc..

[110]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[111]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[112]  Joshua D. Knowles,et al.  Closed-loop, multiobjective optimization of two-dimensional gas chromatography/mass spectrometry for serum metabolomics. , 2007, Analytical chemistry.

[113]  Colin Fyfe,et al.  Risk adjusted returns from technical trading: a genetic programming approach , 2005 .

[114]  Peter Nordin,et al.  Genetic programming - An Introduction: On the Automatic Evolution of Computer Programs and Its Applications , 1998 .

[115]  André Baresel,et al.  Fitness Function Design To Improve Evolutionary Structural Testing , 2002, GECCO.

[116]  Peter Ross,et al.  Hyper-heuristics: Learning To Combine Simple Heuristics In Bin-packing Problems , 2002, GECCO.

[117]  Aravind Srinivasan,et al.  Innovization: innovating design principles through optimization , 2006, GECCO.

[118]  Penousal Machado,et al.  The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music , 2007 .

[119]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[120]  Jonathan Schaeffer,et al.  CHINOOK: The World Man-Machine Checkers Champion , 1996, AI Mag..

[121]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[122]  D.B. Fogel,et al.  A self-learning evolutionary chess program , 2004, Proceedings of the IEEE.

[123]  G. Thompson,et al.  Algorithms for Solving Production-Scheduling Problems , 1960 .

[124]  H. Terashima-Marín,et al.  Evolution of Constraint Satisfaction strategies in examination timetabling , 1999 .

[125]  Shu-Heng Chen,et al.  Toward a computable approach to the efficient market hypothesis: An application of genetic programming , 1995 .

[126]  Phil McMinn,et al.  Search‐based software test data generation: a survey , 2004, Softw. Test. Verification Reliab..

[127]  Stefano Nolfi,et al.  Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines , 2000 .

[128]  David B. Fogel,et al.  The Blondie25 Chess Program Competes Against Fritz 8.0 and a Human Chess Master , 2006, 2006 IEEE Symposium on Computational Intelligence and Games.

[129]  Phil McMinn,et al.  Evolutionary testing of state-based programs , 2005, GECCO '05.

[130]  Franklin Allen,et al.  Using genetic algorithms to find technical trading rules , 1999 .

[131]  Rob A. Rutenbar,et al.  A Unified Formulation , 1998 .

[132]  J. K. Kinnear,et al.  Advances in Genetic Programming , 1994 .

[133]  Gregory S. Hornby,et al.  Automated Antenna Design with Evolutionary Algorithms , 2006 .

[134]  Carlos A. Coello Coello,et al.  Evolutionary multi-objective optimization: a historical view of the field , 2006, IEEE Comput. Intell. Mag..

[135]  Sarfraz Khurshid,et al.  Test input generation with java PathFinder , 2004, ISSTA '04.

[136]  Peter Ross,et al.  Some Observations about GA-Based Exam Timetabling , 1997, PATAT.

[137]  David Notkin,et al.  Symstra: A Framework for Generating Object-Oriented Unit Tests Using Symbolic Execution , 2005, TACAS.

[138]  Peter Ross,et al.  A Promising Hybrid GA/Heuristic Approach for Open-Shop Scheduling Problems , 1994, ECAI.

[139]  Jean-Yves Potvin,et al.  Generating trading rules on the stock markets with genetic programming , 2004, Comput. Oper. Res..

[140]  F. Glover,et al.  Handbook of Metaheuristics , 2019, International Series in Operations Research & Management Science.

[141]  Lee Chapman,et al.  Sky‐view factor approximation using GPS receivers , 2002 .

[142]  Carlos A. Coello Coello,et al.  An updated survey of GA-based multiobjective optimization techniques , 2000, CSUR.

[143]  J. Thornes,et al.  A COMPARISON BETWEEN SPATIAL WINTER INDICES AND EXPENDITURE ON WINTER ROAD MAINTENANCE , 1996 .

[144]  Graham Kendall,et al.  A Monte Carlo Hyper-Heuristic To Optimise Component Placement Sequencing For Multi Head Placement Machine , 2003 .

[145]  Philippe Lacomme,et al.  Competitive Memetic Algorithms for Arc Routing Problems , 2004, Ann. Oper. Res..

[146]  Marco Dorigo,et al.  Cooperative hole avoidance in a swarm-bot , 2006, Robotics Auton. Syst..

[147]  W. G. Hunter,et al.  Evolutionary Operation: A Review , 1966 .

[148]  Mukund Seshadri,et al.  Cooperative Coevolution of Technical Trading Rules , 2003 .

[149]  Richard J. Pryor,et al.  Successful technical trading agents using genetic programming. , 2004 .

[150]  Sarfraz Khurshid,et al.  TestEra A Novel Framework for Testing Java Programs y , 2003 .