The role of the thalamus in the flow of information to the cortex.

The lateral geniculate nucleus is the best understood thalamic relay and serves as a model for all thalamic relays. Only 5-10% of the input to geniculate relay cells derives from the retina, which is the driving input. The rest is modulatory and derives from local inhibitory inputs, descending inputs from layer 6 of the visual cortex, and ascending inputs from the brainstem. These modulatory inputs control many features of retinogeniculate transmission. One such feature is the response mode, burst or tonic, of relay cells, which relates to the attentional demands at the moment. This response mode depends on membrane potential, which is controlled effectively by the modulator inputs. The lateral geniculate nucleus is a first-order relay, because it relays subcortical (i.e. retinal) information to the cortex for the first time. By contrast, the other main thalamic relay of visual information, the pulvinar region, is largely a higher-order relay, since much of it relays information from layer 5 of one cortical area to another. All thalamic relays receive a layer-6 modulatory input from cortex, but higher-order relays in addition receive a layer-5 driver input. Corticocortical processing may involve these corticothalamocortical 're-entry' routes to a far greater extent than previously appreciated. If so, the thalamus sits at an indispensable position for the modulation of messages involved in corticocortical processing.

[1]  S. Sherman Tonic and burst firing: dual modes of thalamocortical relay , 2001, Trends in Neurosciences.

[2]  C. Gilbert,et al.  The projections of cells in different layers of the cat's visual cortex , 1975, The Journal of comparative neurology.

[3]  K. Martin,et al.  Termination of the geniculocortical projection in the striate cortex of macaque monkey: A quantitative immunoelectron microscopic study , 2000, The Journal of comparative neurology.

[4]  S. Sherman,et al.  Relative distribution of synapses in the A‐laminae of the lateral geniculate nucleus of the cat , 2000, The Journal of comparative neurology.

[5]  S. Sherman,et al.  Dual response modes in lateral geniculate neurons: Mechanisms and functions , 1996, Visual Neuroscience.

[6]  J. C. Vuletin,et al.  A Light and Electron Microscopic Study , 1976 .

[7]  J Rinzel,et al.  Current clamp and modeling studies of low-threshold calcium spikes in cells of the cat's lateral geniculate nucleus. , 1999, Journal of neurophysiology.

[8]  A. Rosenquist,et al.  The projections of single thalamic neurons onto multiple visual cortical areas in the cat , 1984, Brain Research.

[9]  H. Swadlow,et al.  The impact of 'bursting' thalamic impulses at a neocortical synapse , 2001, Nature Neuroscience.

[10]  R. Guillery,et al.  Thalamic Relay Functions and Their Role in Corticocortical Communication Generalizations from the Visual System , 2002, Neuron.

[11]  S. Sherman,et al.  Burst and tonic firing in thalamic cells of unanesthetized, behaving monkeys , 2000, Visual Neuroscience.

[12]  D. Pollen,et al.  Striate cortex increases contrast gain of macaque LGN neurons , 2000, Visual Neuroscience.

[13]  A. Hendrickson,et al.  The morphology and distribution of striate cortex terminals in the inferior and lateral subdivision of the Macaca monkey pulvinar , 1979, The Journal of comparative neurology.

[14]  K Krnjevicacute,et al.  An excitatory amino Acid. , 1982, Science.

[15]  D. Ferster,et al.  Strength and Orientation Tuning of the Thalamic Input to Simple Cells Revealed by Electrically Evoked Cortical Suppression , 1998, Neuron.

[16]  T. J. Cunningham,et al.  Organization of corticothalamic projections from parietal cortex in cat , 1981, The Journal of comparative neurology.

[17]  K. Sanderson Visual field projection columns and magnification factors in the lateral geniculate nucleus of the cat , 2004, Experimental Brain Research.

[18]  A. Destexhe,et al.  Dendritic Low-Threshold Calcium Currents in Thalamic Relay Cells , 1998, The Journal of Neuroscience.

[19]  R. W. Guillery,et al.  The organization of synaptic interconnections in the laminae of the dorsal lateral geniculate nucleus of the cat , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[20]  L H Mathers,et al.  The synaptic organization of the cortical projection to the pulvinar of the squirrel monkey , 1972, The Journal of comparative neurology.

[21]  R. Reid,et al.  The processing and encoding of information in the visual cortex , 1996, Current Opinion in Neurobiology.

[22]  S. Sherman,et al.  Fine structural morphology of identified X- and Y-cells in the cat's lateral geniculate nucleus , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[23]  Lotfi B. Merabet,et al.  Motion integration in a thalamic visual nucleus , 1998, Nature.

[24]  C. Gross,et al.  Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  J. Pin,et al.  Pharmacology and functions of metabotropic glutamate receptors. , 1997, Annual review of pharmacology and toxicology.

[26]  R. Guillery Anatomical evidence concerning the role of the thalamus in corticocortical communication: a brief review. , 1995, Journal of anatomy.

[27]  R. Guillery,et al.  Exploring the Thalamus , 2000 .

[28]  S. Tanaka,et al.  Retinal projections to the pulvinar nucleus of the macaque monkey: a re-investigation using autoradiography , 2004, Experimental Brain Research.

[29]  M. Moloney,et al.  Excitatory amino acids. , 1998, Natural product reports.

[30]  R. Duvoisin,et al.  The metabotropic glutamate receptors: Structure and functions , 1995, Neuropharmacology.

[31]  R W Guillery,et al.  Connections of higher order visual relays in the thalamus: A study of corticothalamic pathways in cats , 2001, The Journal of comparative neurology.

[32]  H. Swadlow,et al.  Activation of a Cortical Column by a Thalamocortical Impulse , 2002, The Journal of Neuroscience.

[33]  K. Rockland,et al.  Convergence and branching patterns of round, type 2 corticopulvinar axons , 1998, The Journal of comparative neurology.

[34]  E Kaplan,et al.  Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. , 1987, The Journal of physiology.

[35]  A. Graybiel,et al.  Organization of the striate-recipient zone of the cat's lateralis posterior-pulvinar complex and its relations with the geniculostriate system , 1983, Neuroscience.

[36]  E. G. Jones,et al.  The synaptic organization in the medial geniculate body of afferent fibres ascending from the inferior colliculus , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[37]  B. V. Updyke,et al.  A reevaluation of the functional organization and cytoarchitecture of the feline lateral posterior complex, with observations on adjoining cell groups , 1983, The Journal of comparative neurology.

[38]  F. Ebner,et al.  Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus , 1992, The Journal of comparative neurology.

[39]  D. Lindsley,et al.  Visual input to the pulvinar via lateral geniculate, superior colliculus and visual cortex in the cat. , 1972, Experimental neurology.

[40]  I. Ohzawa,et al.  Contrast gain control in the cat visual cortex , 1982, Nature.

[41]  C. Frassoni,et al.  GABAergic Neurons in Mammalian Thalamus: A Marker of Thalamic Complexity? , 1997, Brain Research Bulletin.

[42]  L M Chalupa,et al.  Visual receptive fields in the striate-recipient zone of the lateral posterior-pulvinar complex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  S. Sherman Functional organization of the W-, X-, and Y- cell pathways in the cat: A review and hypothesis , 1985 .

[44]  F. Ebner,et al.  Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus: Dependence on the barrel field cortex , 1992, The Journal of comparative neurology.

[45]  E. Welker,et al.  A comparative analysis of the morphology of corticothalamic projections in mammals , 2000, Brain Research Bulletin.

[46]  S. Sherman,et al.  Immunocytochemistry and distribution of parabrachial terminals in the lateral geniculate nucleus of the cat: A comparison with corticogeniculate terminals , 1997, The Journal of comparative neurology.

[47]  D. B. Bender Visual activation of neurons in the primate pulvinar depends on cortex but not colliculus , 1983, Brain Research.

[48]  K. Kultas‐Ilinsky,et al.  Fine structure of the magnocellular subdivision of the ventral anterior thalamic nucleus (V Amc) of Macaca mulatta: I. Cell types and synaptology , 1990, The Journal of comparative neurology.

[49]  S. Sherman,et al.  Dendritic current flow in relay cells and interneurons of the cat's lateral geniculate nucleus. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[50]  J. Sprague,et al.  Corticofugal projections from the visual cortices to the thalamus, pretectum and superior colliculus in the cat , 1974, The Journal of comparative neurology.

[51]  J. K. Harting,et al.  Corticocortical communication via the thalamus: Ultrastructural studies of corticothalamic projections from area 17 to the lateral posterior nucleus of the cat and inferior pulvinar nucleus of the owl monkey , 1998, The Journal of comparative neurology.

[52]  G. W. Hoesen,et al.  Retinal projections to the inferior and medial pulvinar nuclei in the old-world monkey , 1983, Brain Research.

[53]  S. Sherman,et al.  Passive cable properties and morphological correlates of neurones in the lateral geniculate nucleus of the cat. , 1987, The Journal of physiology.

[54]  M. Récasens,et al.  Excitatory Amino Acid Metabotropic Receptor Subtypes and Calcium Regulation , 1995, Annals of the New York Academy of Sciences.

[55]  R. Guillery,et al.  On the actions that one nerve cell can have on another: distinguishing "drivers" from "modulators". , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[56]  I. Ohzawa,et al.  Contrast Gain Control in the Visual Cortex: Monocular Versus Binocular Mechanisms , 2000, The Journal of Neuroscience.

[57]  S Shipp,et al.  Corticopulvinar connections of areas V5, V4, and V3 in the macaque monkey: A dual model of retinal and cortical topographies , 2001, The Journal of comparative neurology.

[58]  L. Chalupa,et al.  The laminar distribution of cortical connections with the tecto- and cortico-recipient zones in the cat's lateral posterior nucleus , 1985, Neuroscience.

[59]  F. Hajdu,et al.  Ultrastructure of the anterior ventral and anterior medial nuclei of the cat thalamus , 1978, Experimental Brain Research.

[60]  R. Reid,et al.  The koniocellular pathway in primate vision. , 2000, Annual review of neuroscience.

[61]  M. Bickford,et al.  Synaptic targets of cholinergic terminals in the pulvinar nucleus of the cat , 1997, The Journal of comparative neurology.

[62]  D C Van Essen,et al.  Information processing in the primate visual system: an integrated systems perspective. , 1992, Science.

[63]  R. Mason,et al.  Differential responsiveness of cells in the visual zones of the cat's LP-pulvinar complex to visual stimuli , 2004, Experimental Brain Research.

[64]  M. Colonnier,et al.  Thalamic projections of the superior colliculus in the rhesus monkey, Macaca mulatta. A light and electron microscopic study , 1977, The Journal of comparative neurology.

[65]  W. C. Hall,et al.  The organization of the pulvinar in the grey squirrel (Sciurus carolinensis). II. Synaptic organization and comparisons with the dorsal lateral geniculate nucleus , 1977, The Journal of comparative neurology.

[66]  R. Guillery,et al.  Functional organization of thalamocortical relays. , 1996, Journal of neurophysiology.

[67]  D. Ferster,et al.  Orientation selectivity of thalamic input to simple cells of cat visual cortex , 1996, Nature.

[68]  B. Seltzer,et al.  Neurochemical and connectional organization of the dorsal pulvinar complex in monkeys , 2000, The Journal of comparative neurology.

[69]  D. Mott,et al.  The pharmacology and function of central GABAB receptors. , 1994, International review of neurobiology.

[70]  D. A. Brown,et al.  Muscarinic mechanisms in nerve cells. , 1997, Life sciences.

[71]  K. Rockland,et al.  Single axon analysis of pulvinocortical connections to several visual areas in the Macaque , 1999, The Journal of comparative neurology.

[72]  Leslie G. Ungerleider,et al.  Visual cortical projections and chemoarchitecture of macaque monkey pulvinar , 2000, The Journal of comparative neurology.

[73]  Dr. C. J. Heath,et al.  The Anatomical Organization of the Suprasylvian Gyrus of the Cat , 1971, Advances in Anatomy, Embryology and Cell Biology.

[74]  R. Llinás,et al.  Electrophysiological properties of guinea‐pig thalamic neurones: an in vitro study. , 1984, The Journal of physiology.

[75]  H. Ojima Terminal morphology and distribution of corticothalamic fibers originating from layers 5 and 6 of cat primary auditory cortex. , 1994, Cerebral cortex.

[76]  B. N. Harding,et al.  An ultrastructural study of the termination of afferent fibres within the ventrolateral and centre median nuclei of the monkey thalamus. , 1973, Brain research.

[77]  C. Darian‐Smith,et al.  Comparing thalamocortical and corticothalamic microstructure and spatial reciprocity in the macaque ventral posterolateral nucleus (VPLc) and medial pulvinar , 1999, The Journal of comparative neurology.

[78]  J. Bourassa,et al.  Corticothalamic projections from the primary visual cortex in rats: a single fiber study using biocytin as an anterograde tracer , 1995, Neuroscience.

[79]  S. Sherman,et al.  Control of Dendritic Outputs of Inhibitory Interneurons in the Lateral Geniculate Nucleus , 2000, Neuron.

[80]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[81]  A. Leventhal The neural basis of visual function , 1991 .

[82]  P. Adams,et al.  Visualization of calcium influx through channels that shape the burst and tonic firing modes of thalamic relay cells. , 1997, Journal of neurophysiology.

[83]  M. Bickford,et al.  Synaptic inputs of class III and class V interneurons in the cat pulvinar nucleus: Differential integration of RS and RL inputs , 2002, Visual Neuroscience.

[84]  H J Ralston,et al.  The synaptic organization of lemniscal projections to the ventrobasal thalamus of the cat. , 1969, Brain research.

[85]  Neil A. Macmillan,et al.  Detection Theory: A User's Guide , 1991 .

[86]  M. Deschenes,et al.  Corticothalamic projections from layer V cells in rat are collaterals of long-range corticofugal axons , 1994, Brain Research.

[87]  R. Nicoll,et al.  Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. , 1990, Physiological reviews.

[88]  T. Powell,et al.  Electron microscopy of synaptic glomeruli in the thalamic relay nuclei of the cat , 1969, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[89]  L. Palmer,et al.  Projections of the pulvinar-lateral posterior complex to visual cortical areas in the cat , 1981, Neuroscience.

[90]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[91]  J. Matsubara,et al.  Confocal microscopic study of the dendritic organization of patchy, intrinsic neurons in area 18 of the cat. , 1993, Cerebral cortex.

[92]  J. C. Anderson,et al.  Polyneuronal innervation of spiny stellate neurons in cat visual cortex , 1994, The Journal of comparative neurology.

[93]  M. Deschenes,et al.  Corticothalamic Projections from the Cortical Barrel Field to the Somatosensory Thalamus in Rats: A Single‐fibre Study Using Biocytin as an Anterograde Tracer , 1995, The European journal of neuroscience.

[94]  E. G. Jones,et al.  Thalamic circuitry and thalamocortical synchrony. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[95]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[96]  N. Vesselkin,et al.  Divergence and collateral axon branching in subsystems of visual cortical projections from the cat lateral posterior nucleus. , 1991, Journal fur Hirnforschung.

[97]  L H Mathers,et al.  Tectal projection to the posterior thalamus of the squirrel monkey. , 1971, Brain research.

[98]  S. Sherman,et al.  Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. , 2000, Journal of neurophysiology.

[99]  C. Gross,et al.  Afferent basis of visual response properties in area MT of the macaque. II. Effects of superior colliculus removal , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[100]  R D Freeman,et al.  Monocular and binocular response properties of cells in the striate-recipient zone of the cat's lateral posterior-pulvinar complex. , 1989, Journal of neurophysiology.