Distinct ventral stream and prefrontal cortex representational dynamics during sustained conscious visual perception

[1]  Michael A. Pitts,et al.  An adversarial collaboration protocol for testing contrasting predictions of global neuronal workspace and integrated information theory , 2023, PloS one.

[2]  Zvi N. Roth,et al.  Representations in human primary visual cortex drift over time , 2022, bioRxiv.

[3]  K. Kording,et al.  Three aspects of representation in neuroscience , 2022, Trends in Cognitive Sciences.

[4]  C. Harvey,et al.  Representational drift: Emerging theories for continual learning and experimental future directions , 2022, Current Opinion in Neurobiology.

[5]  R. Malach,et al.  Perceptual stability reflected in neuronal pattern similarities in human visual cortex , 2022, bioRxiv.

[6]  L. Deouell,et al.  Neuroscientific Evidence for Processing Without Awareness. , 2022, Annual review of neuroscience.

[7]  Joseph E LeDoux,et al.  The mnemonic basis of subjective experience , 2022, Nature Reviews Psychology.

[8]  N. Logothetis,et al.  Decoding internally generated transitions of conscious contents in the prefrontal cortex without subjective reports , 2022, Nature Communications.

[9]  Omer Levy,et al.  Shared computational principles for language processing in humans and deep language models , 2022, Nature Neuroscience.

[10]  M. Rule,et al.  Self-healing codes: How stable neural populations can track continually reconfiguring neural representations , 2022, Proceedings of the National Academy of Sciences.

[11]  Jacob A. Zavatone-Veth,et al.  Drifting neuronal representations: Bug or feature? , 2022, Biological Cybernetics.

[12]  S. Dehaene,et al.  Decoding rapidly presented visual stimuli from prefrontal ensembles without report nor post-perceptual processing , 2022, Neuroscience of consciousness.

[13]  Hinze Hogendoorn Perception in real-time: predicting the present, reconstructing the past , 2021, Trends in Cognitive Sciences.

[14]  A. Seth,et al.  Theories of consciousness , 2021, Nature Reviews Neuroscience.

[15]  Michael A. Pitts,et al.  Dissociating the Neural Correlates of Consciousness and Task Relevance in Face Perception Using Simultaneous EEG-fMRI , 2021, The Journal of Neuroscience.

[16]  Michael A. Pitts,et al.  Making the hard problem of consciousness easier , 2021, Science.

[17]  N. Kriegeskorte,et al.  Neural tuning and representational geometry , 2021, Nature Reviews Neuroscience.

[18]  B. Hayden,et al.  The population doctrine in cognitive neuroscience , 2021, Neuron.

[19]  Narayanan Srinivasan,et al.  Time and time again: a multi-scale hierarchical framework for time-consciousness and timing of cognition , 2021, Neuroscience of consciousness.

[20]  Doris Y. Tsao,et al.  A new no-report paradigm reveals that face cells encode both consciously perceived and suppressed stimuli , 2020, eLife.

[21]  M. Herzog,et al.  All in Good Time: Long-Lasting Postdictive Effects Reveal Discrete Perception , 2020, Trends in Cognitive Sciences.

[22]  P. Chuard Temporal Consciousness , 2020, The Oxford Handbook of the Philosophy of Consciousness.

[23]  Matthias S. Treder,et al.  MVPA-Light: A Classification and Regression Toolbox for Multi-Dimensional Data , 2020, Frontiers in Neuroscience.

[24]  J. Changeux,et al.  Conscious Processing and the Global Neuronal Workspace Hypothesis , 2020, Neuron.

[25]  Adrianna R. Loback,et al.  Stable task information from an unstable neural population , 2019, bioRxiv.

[26]  Timothy O’Leary,et al.  Causes and consequences of representational drift , 2019, Current Opinion in Neurobiology.

[27]  W. Bosking,et al.  Functionally Distinct Gamma Range Activity Revealed by Stimulus Tuning in Human Visual Cortex , 2019, Current Biology.

[28]  Joseph E LeDoux,et al.  Understanding the Higher-Order Approach to Consciousness , 2019, Trends in Cognitive Sciences.

[29]  Ninon Burgos,et al.  New advances in the Clinica software platform for clinical neuroimaging studies , 2019 .

[30]  Dejan Draschkow,et al.  Cluster-based permutation tests of MEG/EEG data do not establish significance of effect latency or location. , 2019, Psychophysiology.

[31]  Shreya Saxena,et al.  Towards the neural population doctrine , 2019, Current Opinion in Neurobiology.

[32]  Byron M. Yu,et al.  Cortical Areas Interact through a Communication Subspace , 2019, Neuron.

[33]  Tijl Grootswagers,et al.  The representational dynamics of visual objects in rapid serial visual processing streams , 2018, NeuroImage.

[34]  Robert T. Knight,et al.  Cortical representation of persistent visual stimuli , 2017, NeuroImage.

[35]  Marie Carlén,et al.  What constitutes the prefrontal cortex? , 2017, Science.

[36]  Selmaan N. Chettih,et al.  Dynamic Reorganization of Neuronal Activity Patterns in Parietal Cortex , 2017, Cell.

[37]  R. Knight,et al.  Should a Few Null Findings Falsify Prefrontal Theories of Conscious Perception? , 2017, The Journal of Neuroscience.

[38]  C. Koch,et al.  Are the Neural Correlates of Consciousness in the Front or in the Back of the Cerebral Cortex? Clinical and Neuroimaging Evidence , 2017, The Journal of Neuroscience.

[39]  Gal Chechik,et al.  Invariant Temporal Dynamics Underlie Perceptual Stability in Human Visual Cortex , 2017, Current Biology.

[40]  Francis Tuerlinckx,et al.  Increasing Transparency Through a Multiverse Analysis , 2016, Perspectives on psychological science : a journal of the Association for Psychological Science.

[41]  Jörn Diedrichsen,et al.  Reliability of dissimilarity measures for multi-voxel pattern analysis , 2016, NeuroImage.

[42]  Susan G. Wardle,et al.  Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data , 2016, Journal of Cognitive Neuroscience.

[43]  C. Koch,et al.  Integrated information theory: from consciousness to its physical substrate , 2016, Nature Reviews Neuroscience.

[44]  C. Koch,et al.  Neural correlates of consciousness: progress and problems , 2016, Nature Reviews Neuroscience.

[45]  V. Lamme,et al.  No-Report Paradigms: Extracting the True Neural Correlates of Consciousness , 2015, Trends in Cognitive Sciences.

[46]  Liang Wang,et al.  Probabilistic Maps of Visual Topography in Human Cortex. , 2015, Cerebral cortex.

[47]  Bruno G. Breitmeyer,et al.  Psychophysical “blinding” methods reveal a functional hierarchy of unconscious visual processing , 2015, Consciousness and Cognition.

[48]  R. Yuste From the neuron doctrine to neural networks , 2015, Nature Reviews Neuroscience.

[49]  Michael A. Pitts,et al.  Isolating neural correlates of conscious perception from neural correlates of reporting one's perception , 2014, Front. Psychol..

[50]  R. Knight,et al.  Insights into Human Behavior from Lesions to the Prefrontal Cortex , 2014, Neuron.

[51]  J. S. Guntupalli,et al.  Decoding neural representational spaces using multivariate pattern analysis. , 2014, Annual review of neuroscience.

[52]  K. Grill-Spector,et al.  The functional architecture of the ventral temporal cortex and its role in categorization , 2014, Nature Reviews Neuroscience.

[53]  S. Dehaene,et al.  Characterizing the dynamics of mental representations: the temporal generalization method , 2014, Trends in Cognitive Sciences.

[54]  Keith Johnson,et al.  Phonetic Feature Encoding in Human Superior Temporal Gyrus , 2014, Science.

[55]  W. Einhäuser,et al.  Binocular Rivalry: Frontal Activity Relates to Introspection and Action But Not to Perception , 2014, The Journal of Neuroscience.

[56]  Radoslaw Martin Cichy,et al.  Resolving human object recognition in space and time , 2014, Nature Neuroscience.

[57]  N. Kriegeskorte,et al.  Author ' s personal copy Representational geometry : integrating cognition , computation , and the brain , 2013 .

[58]  Xiao-Jing Wang,et al.  The importance of mixed selectivity in complex cognitive tasks , 2013, Nature.

[59]  B. Meinhardt-Injac The context congruency effect is face specific. , 2013, Acta psychologica.

[60]  Dmitri B. Chklovskii,et al.  Neuronal Circuits Underlying Persistent Representations Despite Time Varying Activity , 2012, Current Biology.

[61]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[62]  W. Singer,et al.  Neuroscience and Biobehavioral Reviews Distilling the Neural Correlates of Consciousness , 2022 .

[63]  Shlomo Bentin,et al.  Age-related changes in processing faces from detection to identification: ERP evidence , 2012, Neurobiology of Aging.

[64]  Stefan Haufe,et al.  Single-trial analysis and classification of ERP components — A tutorial , 2011, NeuroImage.

[65]  J. Maunsell,et al.  Different Origins of Gamma Rhythm and High-Gamma Activity in Macaque Visual Cortex , 2011, PLoS biology.

[66]  Dustin Scheinost,et al.  Unified Framework for Development, Deployment and Robust Testing of Neuroimaging Algorithms , 2011, Neuroinformatics.

[67]  Christopher K. Kovach,et al.  Manifestation of ocular-muscle EMG contamination in human intracranial recordings , 2011, NeuroImage.

[68]  Shlomit Yuval-Greenberg,et al.  Saccadic spike potentials in gamma-band EEG: Characterization, detection and suppression , 2010, NeuroImage.

[69]  Jeremy R. Manning,et al.  Broadband Shifts in Local Field Potential Power Spectra Are Correlated with Single-Neuron Spiking in Humans , 2009, The Journal of Neuroscience.

[70]  Philippe Kahane,et al.  Saccade Related Gamma-Band Activity in Intracerebral EEG: Dissociating Neural from Ocular Muscle Activity , 2009, Brain Topography.

[71]  Keiji Tanaka,et al.  Matching Categorical Object Representations in Inferior Temporal Cortex of Man and Monkey , 2008, Neuron.

[72]  E. Niebur,et al.  Neural Correlates of High-Gamma Oscillations (60–200 Hz) in Macaque Local Field Potentials and Their Potential Implications in Electrocorticography , 2008, The Journal of Neuroscience.

[73]  Biyu J. He,et al.  Electrophysiological correlates of the brain's intrinsic large-scale functional architecture , 2008, Proceedings of the National Academy of Sciences.

[74]  I. Fried,et al.  Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex , 2008, Nature Neuroscience.

[75]  M. Tsodyks,et al.  Synaptic Theory of Working Memory , 2008, Science.

[76]  Arthur Gretton,et al.  Inferring spike trains from local field potentials. , 2008, Journal of neurophysiology.

[77]  Leila Reddy,et al.  Category Selectivity in the Ventral Visual Pathway Confers Robustness to Clutter and Diverted Attention , 2007, Current Biology.

[78]  R. Oostenveld,et al.  Nonparametric statistical testing of EEG- and MEG-data , 2007, Journal of Neuroscience Methods.

[79]  I. Fried,et al.  Coupling between Neuronal Firing Rate, Gamma LFP, and BOLD fMRI Is Related to Interneuronal Correlations , 2007, Current Biology.

[80]  Leila Reddy,et al.  Coding of visual objects in the ventral stream , 2006, Current Opinion in Neurobiology.

[81]  Doris Y. Tsao,et al.  A Cortical Region Consisting Entirely of Face-Selective Cells , 2006, Science.

[82]  K. Grill-Spector,et al.  Repetition and the brain: neural models of stimulus-specific effects , 2006, Trends in Cognitive Sciences.

[83]  B. Argall,et al.  Simplified intersubject averaging on the cortical surface using SUMA , 2006, Human brain mapping.

[84]  I. Fried,et al.  Coupling Between Neuronal Firing, Field Potentials, and fMRI in Human Auditory Cortex , 2005, Science.

[85]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[86]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[87]  C. Koch,et al.  Is perception discrete or continuous? , 2003, Trends in Cognitive Sciences.

[88]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[89]  J. Duncan,et al.  An adaptive coding model of neural function in prefrontal cortex , 2001, Nature Reviews Neuroscience.

[90]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[91]  A. Grinvald,et al.  Dynamics of Ongoing Activity: Explanation of the Large Variability in Evoked Cortical Responses , 1996, Science.

[92]  D. Dennett,et al.  The Nature of Consciousness , 2006 .

[93]  J. Friedman Regularized Discriminant Analysis , 1989 .

[94]  Rupert G. Miller The jackknife-a review , 1974 .

[95]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[96]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[97]  C. Koch,et al.  Towards a neurobiological theory of consciousness , 1990 .