A hyper-redundant manipulator

"Hyper-redundant" manipulators have a very large number of actuatable degrees of freedom. The benefits of hyper-redundant robots include the ability to avoid obstacles, increased robustness with respect to mechanical failure, and the ability to perform new forms of robot locomotion and grasping. The authors examine hyper-redundant manipulator design criteria and the physical implementation of one particular design: a variable geometry truss. >

[1]  Benjamin Kuipers,et al.  A Continuous Approach To Robot Motion Planning With Many Degrees Of Freedom , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  Howie Choset,et al.  Sensor based planning and nonsmooth analysis , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[3]  Gregory S. Chirikjian,et al.  The kinematics of hyper-redundant robot locomotion , 1995, IEEE Trans. Robotics Autom..

[4]  Peter Hughes,et al.  Inverse kinematics of variable-geometry truss manipulators , 1991, J. Field Robotics.

[5]  M Shahinpoor,et al.  On magnetically activated robotic tensor arms , 1986 .

[6]  Hiroshi Furuya,et al.  Variable geometry truss and its application to deployable truss and space crane arm , 1985 .

[7]  J. F. Wilson,et al.  The mechanics and positioning of highly flexible manipulator limbs , 1989 .

[8]  Gregory S. Chirikjian,et al.  An obstacle avoidance algorithm for hyper-redundant manipulators , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[9]  Gregory S. Chirikjian,et al.  A 'sidewinding' locomotion gait for hyper-redundant robots , 1994 .

[10]  Charles F. Reinholtz,et al.  Shape control of high degree-of-freedom variable geometry trusses , 1989 .

[11]  Vladimir J. Lumelsky,et al.  Motion Planning With Uncertainty For Highly Redundant Kinematic Structures I. "Free Snake" Motion , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[12]  Yoji Umetani,et al.  Kinematic Control of Active Cord Mechanism with Tactile Sensors , 1976 .

[13]  Charles A. Klein,et al.  Review of pseudoinverse control for use with kinematically redundant manipulators , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[14]  Gregory S. Chirikjian,et al.  A 'sidewinding' locomotion gait for hyper-redundant robots , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[15]  Shoichi Iikura,et al.  Development of flexible microactuator and its applications to robotic mechanisms , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[16]  Hisato Kobayashi,et al.  A Distributed Control For Hyper Redundant Manipulator , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[17]  J. Burdick,et al.  A Modal Approach to Hyper-Redundant , 1994 .

[18]  W. Kier,et al.  Tongues, tentacles and trunks: the biomechanics of movement in muscular‐hydrostats , 1985 .

[19]  Gregory S. Chirikjian,et al.  A binary paradigm for robotic manipulators , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[20]  Shigeo Hirose,et al.  Moray Drive for Hyper Redundant , .

[21]  Toshio Fukuda,et al.  Rubber gas actuator driven by hydrogen storage alloy for in-pipe inspection mobile robot with flexible structure , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[22]  Ben K. Wada,et al.  Adaptive structures - An overview , 1990 .

[23]  Gregory S. Chirikjian,et al.  Hyper-redundant manipulator dynamics: a continuum approximation , 1994, Adv. Robotics.

[24]  Gregory S. Chirikjian,et al.  A modal approach to hyper-redundant manipulator kinematics , 1994, IEEE Trans. Robotics Autom..