Gradient estimation for ratios

The authors consider the interplay between gradient estimation and ratio estimation. Given unbiased estimators for the numerator and the denominator of the ratio, as well as their gradients, joint central-limit theorems for the ratio and its gradient are derived. The resulting confidence regions are of potential interest when optimizing such ratios numerically, or for sensitivity analysis with respect to parameters whose exact value is unknown. Low-bias estimation for the gradient of a ratio is discussed.<<ETX>>

[1]  Rupert G. Miller The jackknife-a review , 1974 .

[2]  D. Iglehart Simulating stable stochastic systems, V: Comparison of ratio estimators , 1975 .

[3]  Linus Schrage,et al.  A guide to simulation , 1983 .

[4]  Paul Bratley,et al.  A guide to simulation , 1983 .

[5]  Paul Bratley,et al.  A guide to simulation (2nd ed.) , 1986 .

[6]  Xi-Ren Cao,et al.  Convergence properties of infinitesimal perturbation analysis , 1988 .

[7]  A. W. Kemp,et al.  Applied Probability and Queues , 1989 .

[8]  P. Glynn,et al.  Simulating discounted costs , 1989 .

[9]  Alan Weiss,et al.  Sensitivity Analysis for Simulations via Likelihood Ratios , 1989, Oper. Res..

[10]  S. Asmussen,et al.  Applied Probability and Queues , 1989 .

[11]  Ronald W. Wolff,et al.  Stochastic Modeling and the Theory of Queues , 1989 .

[12]  P. L’Ecuyer,et al.  A Unified View of the IPA, SF, and LR Gradient Estimation Techniques , 1990 .

[13]  Peter W. Glynn,et al.  Likelihood ratio gradient estimation for stochastic systems , 1990, CACM.

[14]  Paul Glasserman,et al.  Gradient Estimation Via Perturbation Analysis , 1990 .

[15]  P. Glynn,et al.  Stochastic Optimization by Simulation: Convergence Proofs and Experimental Results for the GI/G/1 Queue in Steady-State , 1991 .

[16]  Pierre L'Ecuyer,et al.  An overview of derivative estimation , 1991, 1991 Winter Simulation Conference Proceedings..

[17]  Philip Heidelberger,et al.  Jackknifing under a Budget Constraint , 1989, INFORMS J. Comput..

[18]  Philip Heidelberger,et al.  A Unified Framework for Simulating Markovian Models of Highly Dependable Systems , 1992, IEEE Trans. Computers.

[19]  P. Glynn LIKELIHOOD RATIO GRADIENT ESTIMATION : AN OVERVIEW by , 2022 .