Rejecting Mismatches by Correspondence Function

A novel method ICF (Identifying point correspondences by Correspondence Function) is proposed for rejecting mismatches from given putative point correspondences. By analyzing the connotation of homography, we introduce a novel concept of correspondence function for two images of a general 3D scene, which captures the relationships between corresponding points by mapping a point in one image to its corresponding point in another. Since the correspondence functions are unknown in real applications, we also study how to estimate them from given putative correspondences, and propose an algorithm IECF (Iteratively Estimate Correspondence Function) based on diagnostic technique and SVM. Then, the proposed ICF method is able to reject the mismatches by checking whether they are consistent with the estimated correspondence functions. Extensive experiments on real images demonstrate the excellent performance of our proposed method. In addition, the ICF is a general method for rejecting mismatches, and it is applicable to images of rigid objects or images of non-rigid objects with unknown deformation.

[1]  Jim Freeman,et al.  Outliers in Statistical Data (3rd edition) , 1995 .

[2]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[3]  Vincent Gay-Bellile,et al.  Direct Estimation of Nonrigid Registrations with Image-Based Self-Occlusion Reasoning , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Shizuhiko Nishisato,et al.  Elements of Dual Scaling: An Introduction To Practical Data Analysis , 1993 .

[5]  Rachid Deriche,et al.  A Robust Technique for Matching two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry , 1995, Artif. Intell..

[6]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[7]  Zhengyou Zhang,et al.  Determining the Epipolar Geometry and its Uncertainty: A Review , 1998, International Journal of Computer Vision.

[8]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[9]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[10]  Rachid Deriche,et al.  Robust Recovery of the Epipolar Geometry for an Uncalibrated Stereo Rig , 1994, ECCV.

[11]  B. Schölkopf,et al.  General cost functions for support vector regression. , 1998 .

[12]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[13]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[14]  Adrien Bartoli,et al.  Maximizing the Predictivity of Smooth Deformable Image Warps through Cross-Validation , 2008, Journal of Mathematical Imaging and Vision.

[15]  Quang-Tuan Luong Matrice Fondamentale et Calibration Visuelle sur l''''Environnement - Vers une plus grande autonomie , 1992 .

[16]  Pauli Kuosmanen,et al.  A geometric invariant representation for the identification of corresponding points , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[17]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[18]  David W. Murray,et al.  Guided-MLESAC: faster image transform estimation by using matching priors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Alireza Bab-Hadiashar,et al.  Fast Estimation of Epipolar Geometry Using High Breakdown M-estimators , 2007, 9th Biennial Conference of the Australian Pattern Recognition Society on Digital Image Computing Techniques and Applications (DICTA 2007).

[20]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[21]  Peter Meer,et al.  Beyond RANSAC: User Independent Robust Regression , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[22]  Andrew Zisserman,et al.  Robust parameterization and computation of the trifocal tensor , 1997, Image Vis. Comput..

[23]  Lai-Wan Chan,et al.  Outliers Treatment in Support Vector Regression for Financial Time Series Prediction , 2004, ICONIP.

[24]  Kristy Sim,et al.  Removing outliers using the L∞ Norm , 2006, CVPR 2006.

[25]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[26]  Hongdong Li,et al.  A practical algorithm for L triangulation with outliers , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[27]  Philip H. S. Torr,et al.  Outlier detection and motion segmentation , 1993, Other Conferences.

[28]  Andrew Zisserman,et al.  MLESAC: A New Robust Estimator with Application to Estimating Image Geometry , 2000, Comput. Vis. Image Underst..

[29]  A. H. M. Rahmatullah Imon,et al.  Identifying multiple influential observations in linear regression , 2005 .

[30]  David Nistér,et al.  Preemptive RANSAC for live structure and motion estimation , 2005, Machine Vision and Applications.

[31]  Milan Sonka,et al.  Image processing analysis and machine vision [2nd ed.] , 1999 .

[32]  Søren I. Olsen,et al.  Epipolar Line Estimation , 1992, ECCV.

[33]  Richard I. Hartley,et al.  Removing Outliers Using The L\infty Norm , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[34]  Zhengyou Zhang,et al.  Parameter estimation techniques: a tutorial with application to conic fitting , 1997, Image Vis. Comput..

[35]  Yi-Zeng Liang,et al.  Robust methods for multivariate analysis — a tutorial review , 1996 .

[36]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[37]  Wei Zhang,et al.  A New Inlier Identification Scheme for Robust Estimation Problems , 2006, Robotics: Science and Systems.

[38]  Vic Barnett,et al.  Outliers in Statistical Data , 1980 .

[39]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..