CBOW and LSTM Based User Mobile Trajectory Prediction

[1]  Michael Beigl,et al.  Semantic-Enhanced Multi-Dimensional Markov Chains on Semantic Trajectories for Predicting Future Locations † , 2018, Sensors.

[2]  Wang-Chien Lee,et al.  Semantic trajectory mining for location prediction , 2011, GIS.

[3]  Chaogui Kang,et al.  Intra-urban human mobility patterns: An urban morphology perspective , 2012 .

[4]  Chao Zhang,et al.  DeepMove: Predicting Human Mobility with Attentional Recurrent Networks , 2018, WWW.

[5]  Jean-François Paiement,et al.  A Generative Model of Urban Activities from Cellular Data , 2018, IEEE Transactions on Intelligent Transportation Systems.

[6]  Shi An,et al.  Taxi Driver’s Operation Behavior and Passengers’ Demand Analysis Based on GPS Data , 2018 .

[7]  Xiaohui Yu,et al.  NLPMM: A Next Location Predictor with Markov Modeling , 2014, PAKDD.

[8]  Chao Zhang,et al.  SERM: A Recurrent Model for Next Location Prediction in Semantic Trajectories , 2017, CIKM.

[9]  Jing Li,et al.  Predicting Activity and Location with Multi-task Context Aware Recurrent Neural Network , 2018, IJCAI.

[10]  Wei Cao,et al.  Spatio-Temporal Position Prediction Model for Mobile Users Based on LSTM , 2019, 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS).

[11]  Shuqiang Huang,et al.  Location-based trustworthy services recommendation in cooperative-communication-enabled Internet of Vehicles , 2019, J. Netw. Comput. Appl..

[12]  Azadeh Shakery,et al.  Deep Neural Networks for Query Expansion using Word Embeddings , 2018, ECIR.

[13]  Xing Xie,et al.  Mining interesting locations and travel sequences from GPS trajectories , 2009, WWW '09.

[14]  Yinhai Wang,et al.  Uncovering urban human mobility from large scale taxi GPS data , 2015 .

[15]  Nei Kato,et al.  A Mobility Analytical Framework for Big Mobile Data in Densely Populated Area , 2017, IEEE Transactions on Vehicular Technology.