Proceedings of the 1st International Workshop on Robot Learning and Planning (RLP 2016)

In this paper we present a simulated annealingbased method for planning efficient paths with a tether which avoid entanglement in an obstacle-filled environment. By evaluating total path cost as a function of both path length and entanglements, a robot can plan a path through multiple points of interest while avoiding becoming entangled in any obstacle. In simulated trials, the robot was able to successfully plan non-entangling paths in an obstacle-filled environment. These results were then validated in pool trials on a SeaBotix vLVB300 underwater vehicle.

[1]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[2]  John H. Reif,et al.  Complexity of the mover's problem and generalizations , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[3]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[4]  J. Perram,et al.  Statistical Mechanics of Hard Ellipsoids. I. Overlap Algorithm and the Contact Function , 1985 .

[5]  Kenneth Kreutz-Delgado,et al.  Learning Global Direct Inverse Kinematics , 1991, NIPS.

[6]  P. Goodey,et al.  Intersection bodies and ellipsoids , 1995 .

[7]  Lydia E. Kavraki Computation of configuration-space obstacles using the fast Fourier transform , 1995, IEEE Trans. Robotics Autom..

[8]  Dinesh Manocha,et al.  OBBTree: a hierarchical structure for rapid interference detection , 1996, SIGGRAPH.

[9]  T. Mattfeldt Stochastic Geometry and Its Applications , 1996 .

[10]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[11]  Nancy M. Amato,et al.  A randomized roadmap method for path and manipulation planning , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[12]  Tien C. Hsia,et al.  Obstacle avoidance inverse kinematics solution of redundant robots by neural networks , 1997, Robotica.

[13]  Daniel Vallejo,et al.  OBPRM: an obstacle-based PRM for 3D workspaces , 1998 .

[14]  Mark H. Overmars,et al.  The Gaussian sampling strategy for probabilistic roadmap planners , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[15]  Danchi Jiang,et al.  A Lagrangian network for kinematic control of redundant robot manipulators , 1999, IEEE Trans. Neural Networks.

[16]  Gregory S. Chirikjian,et al.  Computation of Robot Configuration and Workspaces via the Fourier Transform on the Discrete-Motion Group , 1999, Int. J. Robotics Res..

[17]  Gregory S. Chirikjian,et al.  A new potential field method for robot path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[18]  Nancy M. Amato,et al.  Choosing good distance metrics and local planners for probabilistic roadmap methods , 2000, IEEE Trans. Robotics Autom..

[19]  Stefan Schaal,et al.  Learning inverse kinematics , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[20]  Masayuki Inaba,et al.  Footstep planning among obstacles for biped robots , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[21]  Hans Bock,et al.  An Efficient Algorithm for Nonlinear Model Predictive Control of Large-Scale Systems Part I: Description of the Method (Ein effizienter Algorithmus für die nichtlineare prädiktive Regelung großer Systeme Teil I: Methodenbeschreibung) , 2002 .

[22]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[23]  David Hsu,et al.  The bridge test for sampling narrow passages with probabilistic roadmap planners , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[24]  J. Chestnutt,et al.  Planning Biped Navigation Strategies in Complex Environments , 2003 .

[25]  J. Löfberg Minimax approaches to robust model predictive control , 2003 .

[26]  Aaron Hertzmann,et al.  Style-based inverse kinematics , 2004, ACM Trans. Graph..

[27]  Andrew W. Moore,et al.  An Investigation of Practical Approximate Nearest Neighbor Algorithms , 2004, NIPS.

[28]  Jun Wang,et al.  Obstacle avoidance for kinematically redundant manipulators using a dual neural network , 2004, IEEE Trans. Syst. Man Cybern. Part B.

[29]  Stefan Schaal,et al.  Incremental Online Learning in High Dimensions , 2005, Neural Computation.

[30]  Timothy Bretl,et al.  Using Motion Primitives in Probabilistic Sample-Based Planning for Humanoid Robots , 2008, WAFR.

[31]  Lydia E. Kavraki,et al.  Quantitative Analysis of Nearest-Neighbors Search in High-Dimensional Sampling-Based Motion Planning , 2006, WAFR.

[32]  Steven M. LaValle,et al.  Improving Motion-Planning Algorithms by Efficient Nearest-Neighbor Searching , 2007, IEEE Transactions on Robotics.

[33]  Stephen J. Wright,et al.  Fast, large-scale model predictive control by partial enumeration , 2007, Autom..

[34]  Toshiharu Sugie,et al.  Adaptive model predictive control for a class of constrained linear systems based on the comparison model , 2007, Autom..

[35]  Sebastian Thrun,et al.  Apprenticeship learning for motion planning with application to parking lot navigation , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[36]  Inderjit S. Dhillon,et al.  Online Metric Learning and Fast Similarity Search , 2008, NIPS.

[37]  Hans Joachim Ferreau,et al.  An online active set strategy to overcome the limitations of explicit MPC , 2008 .

[38]  N. Amato,et al.  Nearest Neighbor Search Methods , 2008 .

[39]  Gershon Elber,et al.  Continuous Collision Detection for Ellipsoids , 2009, IEEE Transactions on Visualization and Computer Graphics.

[40]  Peter Stone,et al.  Transfer Learning for Reinforcement Learning Domains: A Survey , 2009, J. Mach. Learn. Res..

[41]  Donald R. Jones,et al.  Direct Global Optimization Algorithm , 2009, Encyclopedia of Optimization.

[42]  Jyh-Ming Lien,et al.  Planning motion in environments with similar obstacles , 2009, Robotics: Science and Systems.

[43]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.

[44]  Ryan M. Eustice,et al.  Pose-graph visual SLAM with geometric model selection for autonomous underwater ship hull inspection , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[45]  Vijay R. Kumar,et al.  Experimental Evaluation of Multirobot Aerial Control Algorithms , 2010 .

[46]  Stephen P. Boyd,et al.  Fast Model Predictive Control Using Online Optimization , 2010, IEEE Transactions on Control Systems Technology.

[47]  Sethu Vijayakumar,et al.  Adaptive Optimal Feedback Control with Learned Internal Dynamics Models , 2010, From Motor Learning to Interaction Learning in Robots.

[48]  Jonathan Tapson,et al.  A model of the humanoid body for self collision detection based on elliptical capsules , 2011, 2011 IEEE International Conference on Robotics and Biomimetics.

[49]  Avishek Saha,et al.  Online Learning of Multiple Tasks and Their Relationships , 2011, AISTATS.

[50]  Pieter Abbeel,et al.  EG-RRT: Environment-guided random trees for kinodynamic motion planning with uncertainty and obstacles , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[51]  Julien De Rouck,et al.  A methodology for production and cost assessment of a farm of wave energy converters , 2011 .

[52]  Manfred Morari,et al.  Learning a feasible and stabilizing explicit model predictive control law by robust optimization , 2011, IEEE Conference on Decision and Control and European Control Conference.

[53]  Peter K. Allen,et al.  Data-driven grasping , 2011, Auton. Robots.

[54]  Moritz Diehl,et al.  An auto-generated real-time iteration algorithm for nonlinear MPC in the microsecond range , 2011, Autom..

[55]  Maxim Likhachev,et al.  E-Graphs: Bootstrapping Planning with Experience Graphs , 2012, SOCS.

[56]  Jian Wang,et al.  Non-cascaded Dynamic Inversion Design for Quadrotor Position Control with L 1 Augmentation , 2012 .

[57]  Dmitry Berenson,et al.  A robot path planning framework that learns from experience , 2012, 2012 IEEE International Conference on Robotics and Automation.

[58]  Vijay Kumar,et al.  Topological constraints in search-based robot path planning , 2012, Auton. Robots.

[59]  Manfred Morari,et al.  Computational Complexity Certification for Real-Time MPC With Input Constraints Based on the Fast Gradient Method , 2012, IEEE Transactions on Automatic Control.

[60]  Marco Sciandrone,et al.  Machine learning for global optimization , 2010, Computational Optimization and Applications.

[61]  Claire J. Tomlin,et al.  Learning-based model predictive control on a quadrotor: Onboard implementation and experimental results , 2012, 2012 IEEE International Conference on Robotics and Automation.

[62]  Nancy M. Amato,et al.  The Toggle Local Planner for sampling-based motion planning , 2012, 2012 IEEE International Conference on Robotics and Automation.

[63]  Sam Ade Jacobs,et al.  Adaptive neighbor connection for PRMs: A natural fit for heterogeneous environments and parallelism , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[64]  Marc Toussaint,et al.  Fast motion planning from experience: trajectory prediction for speeding up movement generation , 2013, Auton. Robots.

[65]  Eric Eaton,et al.  ELLA: An Efficient Lifelong Learning Algorithm , 2013, ICML.

[66]  Pong C. Yuen,et al.  Topology Aware Data-Driven Inverse Kinematics , 2013, Comput. Graph. Forum.

[67]  Danica Kragic,et al.  Data-Driven Grasp Synthesis—A Survey , 2013, IEEE Transactions on Robotics.

[68]  Pieter Abbeel,et al.  Predicting initialization effectiveness for trajectory optimization , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[69]  Vijay Kumar,et al.  Path planning for a tethered mobile robot , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[70]  Kostas E. Bekris,et al.  Sparse roadmap spanners for asymptotically near-optimal motion planning , 2014, Int. J. Robotics Res..

[71]  Elon Rimon,et al.  Online Coverage by a Tethered Autonomous Mobile Robot in Planar Unknown Environments , 2013, IEEE Transactions on Robotics.

[72]  Nancy M. Amato,et al.  UMAPRM: Uniformly sampling the medial axis , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[73]  Christian Kirches,et al.  qpOASES: a parametric active-set algorithm for quadratic programming , 2014, Mathematical Programming Computation.

[74]  Jan Swevers,et al.  Experimental Validation of Combined Nonlinear Optimal Control and Estimation of an Overhead Crane , 2014 .

[75]  Yong Kuen Ho,et al.  Generalized Predictive Control Algorithm with Real-Time Simultaneous Modeling and Tuning , 2014 .

[76]  Angela P. Schoellig,et al.  Learning-based nonlinear model predictive control to improve vision-based mobile robot path-tracking in challenging outdoor environments , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[77]  Nancy M. Amato,et al.  Improved roadmap connection via local learning for sampling based planners , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[78]  G. Chirikjian,et al.  Closed-form characterization of the Minkowski sum and difference of two ellipsoids , 2015 .

[79]  Dinesh Manocha,et al.  Real-time reciprocal collision avoidance with elliptical agents , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[80]  Dinesh Manocha,et al.  Efficient Penetration Depth Computation Between Rigid Models Using Contact Space Propagation Sampling , 2016, IEEE Robotics and Automation Letters.

[81]  Nathan Michael,et al.  Fast nonlinear model predictive control via partial enumeration , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[82]  Kris Hauser Learning the Problem-Optimum Map: Analysis and Application to Global Optimization in Robotics , 2017, IEEE Transactions on Robotics.