Mechanisms of top-down attention

[1]  E. J. Tehovnik,et al.  Saccadic eye movements evoked by microstimulation of striate cortex , 2003, The European journal of neuroscience.

[2]  D. B. Bender,et al.  Saccadic eye movements following kainic acid lesions of the pulvinar in monkeys , 2004, Experimental Brain Research.

[3]  G. Karmos,et al.  Entrainment of Neuronal Oscillations as a Mechanism of Attentional Selection , 2008, Science.

[4]  S. Treue,et al.  Feature-Based Attention Increases the Selectivity of Population Responses in Primate Visual Cortex , 2004, Current Biology.

[5]  Leslie G. Ungerleider,et al.  Posterior parietal cortex and the filtering of distractors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[6]  S Shipp,et al.  The functional logic of cortico-pulvinar connections. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[7]  D. Rasmusson,et al.  Inactivation of prefrontal cortex abolishes cortical acetylcholine release evoked by sensory or sensory pathway stimulation in the rat , 2007, Neuroscience.

[8]  Laurent Itti,et al.  Top-down attention selection is fine grained. , 2006, Journal of vision.

[9]  L. Itti,et al.  Training Top-Down Attention Improves Performance on a Triple-Conjunction Search Task , 2010, PloS one.

[10]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[11]  Jillian H. Fecteau,et al.  Salience, relevance, and firing: a priority map for target selection , 2006, Trends in Cognitive Sciences.

[12]  Björn N. S. Vlaskamp,et al.  TMS pulses on the frontal eye fields break coupling between visuospatial attention and eye movements. , 2007, Journal of neurophysiology.

[13]  Jacqueline Gottlieb,et al.  Functional Significance of Nonspatial Information in Monkey Lateral Intraparietal Area , 2009, The Journal of Neuroscience.

[14]  M. Pinsk,et al.  Attention modulates responses in the human lateral geniculate nucleus , 2002, Nature Neuroscience.

[15]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[16]  A. Thiele,et al.  Attention – oscillations and neuropharmacology , 2009, The European journal of neuroscience.

[17]  Yq Liu,et al.  Intention and Attention: Different functional roles for LIPd and LIPv , 2010, Nature Neuroscience.

[18]  R. Deichmann,et al.  Concurrent TMS-fMRI and Psychophysics Reveal Frontal Influences on Human Retinotopic Visual Cortex , 2006, Current Biology.

[19]  Stefan Treue,et al.  Feature-based attention influences motion processing gain in macaque visual cortex , 1999, Nature.

[20]  R. Dolan,et al.  Distant influences of amygdala lesion on visual cortical activation during emotional face processing , 2004, Nature Neuroscience.

[21]  M. Sarter,et al.  Prefrontal cortical modulation of acetylcholine release in posterior parietal cortex , 2005, Neuroscience.

[22]  James R Müller,et al.  Microstimulation of the superior colliculus focuses attention without moving the eyes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Robert Ward,et al.  Spatial and temporal deficits are regionally dissociable in patients with pulvinar lesions. , 2008, Brain : a journal of neurology.

[24]  Nicholas A. Steinmetz,et al.  Top-down control of visual attention , 2010, Current Opinion in Neurobiology.

[25]  William T Newsome,et al.  Middle Temporal Visual Area Microstimulation Influences Veridical Judgments of Motion Direction , 2002, The Journal of Neuroscience.

[26]  L. Itti,et al.  Modeling the influence of task on attention , 2005, Vision Research.

[27]  R. Marrocco,et al.  Electrical microstimulation of primate posterior parietal cortex initiates orienting and alerting components of covert attention , 2002, Experimental Brain Research.

[28]  D. Heeger,et al.  The Normalization Model of Attention , 2009, Neuron.

[29]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[30]  Fred H Hamker,et al.  Modeling feature-based attention as an active top-down inference process. , 2006, Bio Systems.

[31]  W. James Scientific Books: Talks to Teachers on Psychology, and to Students on Some of Life's Ideals , 2013 .

[32]  T. Pasternak,et al.  Transient and permanent deficits in motion perception after lesions of cortical areas MT and MST in the macaque monkey. , 1999, Cerebral cortex.

[33]  Richard J Krauzlis,et al.  Inactivation of primate superior colliculus impairs covert selection of signals for perceptual judgments , 2010, Nature Neuroscience.

[34]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[35]  Carrie J. McAdams,et al.  Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 , 1999, The Journal of Neuroscience.

[36]  Puiu F. Balan,et al.  Attention as a decision in information space , 2010, Trends in Cognitive Sciences.

[37]  Ilya E. Monosov,et al.  Measurements of Simultaneously Recorded Spiking Activity and Local Field Potentials Suggest that Spatial Selection Emerges in the Frontal Eye Field , 2008, Neuron.

[38]  E. J. Tehovnik,et al.  Differential effects of laminar stimulation of V1 cortex on target selection by macaque monkeys , 2002, The European journal of neuroscience.

[39]  M. Posner,et al.  Deficits in human visual spatial attention following thalamic lesions. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Robert M. McPeek,et al.  Deficits in saccade target selection after inactivation of superior colliculus , 2004, Nature Neuroscience.

[41]  N. P. Bichot,et al.  Visual feature selectivity in frontal eye fields induced by experience in mature macaques , 1996, Nature.

[42]  Kae Nakamura,et al.  Basal ganglia orient eyes to reward. , 2006, Journal of neurophysiology.

[43]  David A. Leopold,et al.  Blindsight depends on the lateral geniculate nucleus , 2010, Nature.

[44]  Robert Oostenveld,et al.  Neural Mechanisms of Visual Attention : How Top-Down Feedback Highlights Relevant Locations , 2007 .

[45]  Jerald D. Kralik,et al.  Representation of Attended Versus Remembered Locations in Prefrontal Cortex , 2004, PLoS biology.

[46]  R. Gregory The intelligent eye , 1970 .

[47]  Vincent P. Ferrera,et al.  Microstimulation of the Dorsolateral Prefrontal Cortex Biases Saccade Target Selection , 2005, Journal of Cognitive Neuroscience.

[48]  M. Goldberg,et al.  Attention, intention, and priority in the parietal lobe. , 2010, Annual review of neuroscience.

[49]  M. Petrides Dissociable Roles of Mid-Dorsolateral Prefrontal and Anterior Inferotemporal Cortex in Visual Working Memory , 2000, The Journal of Neuroscience.

[50]  V. Lamme,et al.  The distinct modes of vision offered by feedforward and recurrent processing , 2000, Trends in Neurosciences.

[51]  David L. Sheinberg,et al.  Learning to recognize visual objects with microstimulation in inferior temporal cortex. , 2008, Journal of neurophysiology.

[52]  J. Maunsell,et al.  Magnocellular or parvocellular lesions in the lateral geniculate nucleus of monkeys cause minor deficits of smooth pursuit eye movements , 1994, Vision Research.

[53]  Tai Sing Lee,et al.  Hierarchical Bayesian inference in the visual cortex. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[54]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[55]  R. Wurtz,et al.  Guarding the gateway to cortex: attention in visual thalamus , 2008, Nature.

[56]  R. Wurtz,et al.  Enhancement of visual responses in monkey striate cortex and frontal eye fields. , 1976, Journal of neurophysiology.

[57]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[58]  Eric I. Knudsen,et al.  Distinct Mechanisms for Top-Down Control of Neural Gain and Sensitivity in the Owl Optic Tectum , 2008, Neuron.

[59]  Christopher D. Carello,et al.  Manipulating Intent Evidence for a Causal Role of the Superior Colliculus in Target Selection , 2004, Neuron.

[60]  R. Desimone,et al.  Attentional control of visual perception: cortical and subcortical mechanisms. , 1990, Cold Spring Harbor symposia on quantitative biology.

[61]  Gustavo Deco,et al.  The Neuronal Basis of Attention: Rate versus Synchronization Modulation , 2008, The Journal of Neuroscience.

[62]  Tadashi Isa,et al.  Striate Cortical Lesions Affect Deliberate Decision and Control of Saccade: Implication for Blindsight , 2008, The Journal of Neuroscience.

[63]  L. Itti,et al.  Search Goal Tunes Visual Features Optimally , 2007, Neuron.

[64]  Louise S. Delicato,et al.  Acetylcholine contributes through muscarinic receptors to attentional modulation in V1 , 2008, Nature.

[65]  G. Boynton,et al.  Global feature-based attention for motion and color , 2003, Vision Research.

[66]  D. V. van Essen,et al.  A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[67]  T. Moore,et al.  Microstimulation of the frontal eye field and its effects on covert spatial attention. , 2004, Journal of neurophysiology.

[68]  S. Sherman The thalamus is more than just a relay , 2007, Current Opinion in Neurobiology.

[69]  Barry J. Dickson,et al.  Fast Backprojections from the Motion to the Primary Visual Area Necessary for Visual Awareness , 2001 .

[70]  Jim M. Monti,et al.  Neural Integration of Top-Down Spatial and Feature-Based Information in Visual Search , 2008, The Journal of Neuroscience.

[71]  J. Wolfe,et al.  What attributes guide the deployment of visual attention and how do they do it? , 2004, Nature Reviews Neuroscience.

[72]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[73]  M. Mallar Chakravarty,et al.  The Connectivity of the Human Pulvinar: A Diffusion Tensor Imaging Tractography Study , 2007, Int. J. Biomed. Imaging.

[74]  D. Munoz,et al.  On the importance of the transient visual response in the superior colliculus , 2008, Current Opinion in Neurobiology.

[75]  M. Goldberg,et al.  The representation of visual salience in monkey parietal cortex , 1998, Nature.

[76]  Chi-Hung Juan,et al.  Dissociation of spatial attention and saccade preparation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[77]  Glyn W. Humphreys,et al.  Impaired attentional selection following lesions to human pulvinar: Evidence for homology between human and monkey , 2009, Proceedings of the National Academy of Sciences.

[78]  John K. Tsotsos,et al.  Modeling Visual Attention via Selective Tuning , 1995, Artif. Intell..

[79]  S. Petersen,et al.  The pulvinar and visual salience , 1992, Trends in Neurosciences.

[80]  R. Gregory,et al.  Knowledge in perception and illusion. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[81]  R. Kiani,et al.  Microstimulation of inferotemporal cortex influences face categorization , 2006, Nature.

[82]  Laurent Itti,et al.  Beyond bottom-up: Incorporating task-dependent influences into a computational model of spatial attention , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[83]  Robert Desimone,et al.  Top–Down Attentional Deficits in Macaques with Lesions of Lateral Prefrontal Cortex , 2007, The Journal of Neuroscience.

[84]  R Clay Reid,et al.  Demonstration of artificial visual percepts generated through thalamic microstimulation , 2007, Proceedings of the National Academy of Sciences.

[85]  Ivan N Pigarev,et al.  Neural Mechanisms of Visual Attention: How Top-Down Feedback Highlights Relevant Locations , 2007, Science.

[86]  Robert H. Wurtz,et al.  Subcortical Modulation of Attention Counters Change Blindness , 2004, The Journal of Neuroscience.

[87]  R. Desimone,et al.  Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. , 1997, Journal of neurophysiology.

[88]  D. V. van Essen,et al.  Windows on the brain: the emerging role of atlases and databases in neuroscience , 2002, Current Opinion in Neurobiology.

[89]  E. Miller,et al.  Response to Comment on "Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices" , 2007, Science.

[90]  W. Singer,et al.  Oscillatory Neuronal Synchronization in Primary Visual Cortex as a Correlate of Stimulus Selection , 2002, The Journal of Neuroscience.

[91]  K. Johnston,et al.  Microstimulation of monkey dorsolateral prefrontal cortex impairs antisaccade performance , 2008, Experimental Brain Research.

[92]  Jon H. Kaas,et al.  Pulvinar contributions to the dorsal and ventral streams of visual processing in primates , 2007, Brain Research Reviews.

[93]  N. P. Bichot,et al.  A visual salience map in the primate frontal eye field. , 2005, Progress in brain research.

[94]  J. Wolfe,et al.  Guided Search 2.0 A revised model of visual search , 1994, Psychonomic bulletin & review.

[95]  Peter W Dicke,et al.  Neuron-specific contribution of the superior colliculus to overt and covert shifts of attention , 2004, Nature Neuroscience.

[96]  David C. Van Essen,et al.  Application of Information Technology: An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex , 2001, J. Am. Medical Informatics Assoc..

[97]  J. Gottlieb From Thought to Action: The Parietal Cortex as a Bridge between Perception, Action, and Cognition , 2007, Neuron.

[98]  N. P. Bichot,et al.  Effects of similarity and history on neural mechanisms of visual selection , 1999, Nature Neuroscience.

[99]  F. Werblin,et al.  Parallel processing in the mammalian retina: lateral and vertical interactions across stacked representations. , 2001, Progress in brain research.

[100]  Timothy D. Hanks,et al.  Microstimulation of macaque area LIP affects decision-making in a motion discrimination task , 2006, Nature Neuroscience.

[101]  Antonio Torralba,et al.  Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. , 2006, Psychological review.

[102]  C G Gross,et al.  Direction of motion discrimination after early lesions of striate cortex (V1) of the macaque monkey. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[103]  E. Knudsen Fundamental components of attention. , 2007, Annual review of neuroscience.

[104]  M. A. Basso,et al.  Shedding new light on the role of the basal ganglia-superior colliculus pathway in eye movements , 2010, Current Opinion in Neurobiology.

[105]  J. Reynolds,et al.  Attentional modulation of visual processing. , 2004, Annual review of neuroscience.

[106]  Robert Desimone,et al.  Cortical Connections of Area V4 in the Macaque , 2008 .

[107]  C. Gilbert,et al.  Brain States: Top-Down Influences in Sensory Processing , 2007, Neuron.

[108]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[109]  H. Basford,et al.  Optimal eye movement strategies in visual search , 2005 .

[110]  D. B. Bender,et al.  Comparison of the effects of superior colliculus and pulvinar lesions on visual search and tachistoscopic pattern discrimination in monkeys , 2004, Experimental Brain Research.

[111]  R. Desimone,et al.  High-Frequency, Long-Range Coupling Between Prefrontal and Visual Cortex During Attention , 2009, Science.

[112]  Robert Desimone,et al.  Parallel and Serial Neural Mechanisms for Visual Search in Macaque Area V4 , 2005, Science.

[113]  R. Wurtz,et al.  Functional Identification of a Pulvinar Path from Superior Colliculus to Cortical Area MT , 2010, The Journal of Neuroscience.

[114]  Leslie G. Ungerleider,et al.  Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys , 2000, Nature Neuroscience.

[115]  T. Egner,et al.  Search for a threatening target triggers limbic guidance of spatial attention , 2009, NeuroImage.

[116]  Henrik I. Christensen,et al.  Computational visual attention systems and their cognitive foundations: A survey , 2010, TAP.

[117]  John H.R. Maunsell,et al.  Behavioral Detection of Electrical Microstimulation in Different Cortical Visual Areas , 2007, Current Biology.

[118]  D. Gitelman,et al.  The spatial attention network interacts with limbic and monoaminergic systems to modulate motivation-induced attention shifts. , 2008, Cerebral cortex.

[119]  Christopher J. Peck,et al.  Reward Modulates Attention Independently of Action Value in Posterior Parietal Cortex , 2009, The Journal of Neuroscience.

[120]  Á. Pascual-Leone,et al.  Fast Backprojections from the Motion to the Primary Visual Area Necessary for Visual Awareness , 2001, Science.

[121]  Y. Miyashita,et al.  Top-down signal from prefrontal cortex in executive control of memory retrieval , 1999, Nature.

[122]  Robert Desimone,et al.  Impaired filtering of distracter stimuli by TE neurons following V4 and TEO lesions in macaques. , 2004, Cerebral cortex.

[123]  L. Pessoa On the relationship between emotion and cognition , 2008, Nature Reviews Neuroscience.

[124]  J. Assad,et al.  Dynamic coding of behaviourally relevant stimuli in parietal cortex , 2002, Nature.

[125]  Y. Yanagawa,et al.  Nigral Inhibition of GABAergic Neurons in Mouse Superior Colliculus , 2008, The Journal of Neuroscience.

[126]  A. Graybiel The basal ganglia: learning new tricks and loving it , 2005, Current Opinion in Neurobiology.

[127]  P. Fries Neuronal gamma-band synchronization as a fundamental process in cortical computation. , 2009, Annual review of neuroscience.

[128]  M Mishkin,et al.  Effects of selective neonatal temporal lobe lesions on visual recognition memory in rhesus monkeys , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[129]  Pierrick Coupé,et al.  3D Wavelet Subbands Mixing for Image Denoising , 2008, Int. J. Biomed. Imaging.

[130]  R. Desimone,et al.  A backward progression of attentional effects in the ventral stream , 2009, Proceedings of the National Academy of Sciences.

[131]  B. Motter Neural correlates of attentive selection for color or luminance in extrastriate area V4 , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[132]  Junying Yuan,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2022 .

[133]  Michael E. Hasselmo,et al.  Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection , 2005, Brain Research Reviews.

[134]  W. Newsome,et al.  A selective impairment of motion perception following lesions of the middle temporal visual area (MT) , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[135]  M. Goldberg,et al.  Neuronal Activity in the Lateral Intraparietal Area and Spatial Attention , 2003, Science.

[136]  C. Chabris,et al.  Gorillas in Our Midst: Sustained Inattentional Blindness for Dynamic Events , 1999, Perception.

[137]  T. Pasternak,et al.  Microstimulation of cortical area MT affects performance on a visual working memory task. , 2001, Journal of neurophysiology.

[138]  Etienne Olivier,et al.  Contribution of the Monkey Frontal Eye Field to Covert Visual Attention , 2006, The Journal of Neuroscience.

[139]  Krista A. Ehinger,et al.  Modelling search for people in 900 scenes: A combined source model of eye guidance , 2009 .

[140]  M. Chun,et al.  Contextual Cueing: Implicit Learning and Memory of Visual Context Guides Spatial Attention , 1998, Cognitive Psychology.