Robots That Use Language

This article surveys the use of natural language in robotics from a robotics point of view. To use human language, robots must map words to aspects of the physical world, mediated by the robot's se...

[1]  Brian Scassellati,et al.  Emotional Storytelling in the Classroom: Individual versus Group Interaction between Children and Robots , 2015, 2015 10th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[2]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[3]  Raymond J. Mooney,et al.  Training a Multilingual Sportscaster: Using Perceptual Context to Learn Language , 2014, J. Artif. Intell. Res..

[4]  Hadas Kress-Gazit,et al.  Sorry Dave, I'm Afraid I Can't Do That: Explaining Unachievable Robot Tasks Using Natural Language , 2013, Robotics: Science and Systems.

[5]  Terry Winograd,et al.  Procedures As A Representation For Data In A Computer Program For Understanding Natural Language , 1971 .

[6]  Guy Hoffman,et al.  Computational Human-Robot Interaction , 2016, Found. Trends Robotics.

[7]  Maya Cakmak,et al.  Towards grounding concepts for transfer in goal learning from demonstration , 2011, 2011 IEEE International Conference on Development and Learning (ICDL).

[8]  Dan Klein,et al.  Alignment-Based Compositional Semantics for Instruction Following , 2015, EMNLP.

[9]  Yoav Artzi,et al.  A Corpus of Natural Language for Visual Reasoning , 2017, ACL.

[10]  Peter Stone,et al.  Guiding Exploratory Behaviors for Multi-Modal Grounding of Linguistic Descriptions , 2018, AAAI.

[11]  David Whitney,et al.  Interpreting multimodal referring expressions in real time , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[12]  Stefanie Tellex,et al.  Clarifying commands with information-theoretic human-robot dialog , 2013, HRI 2013.

[13]  Trevor Darrell,et al.  Understanding object descriptions in robotics by open-vocabulary object retrieval and detection , 2016, Int. J. Robotics Res..

[14]  S. Pinker The language instinct : how the mind creates language , 1995 .

[15]  Michelle X. Zhou,et al.  A probabilistic approach to reference resolution in multimodal user interfaces , 2004, IUI '04.

[16]  Cynthia Breazeal,et al.  A Comparison of Children Learning New Words from Robots , Tablets , & People , 2015 .

[17]  Stephanie Rosenthal,et al.  Modeling humans as observation providers using POMDPs , 2011, 2011 RO-MAN.

[18]  Stephanie Rosenthal,et al.  GRACE and GEORGE: Autonomous Robots for the AAAI Robot Challenge , 2003, AAAI Mobile Robot Competition.

[19]  Matthias Scheutz,et al.  Going Beyond Literal Command-Based Instructions: Extending Robotic Natural Language Interaction Capabilities , 2015, AAAI.

[20]  Luke S. Zettlemoyer,et al.  Reinforcement Learning for Mapping Instructions to Actions , 2009, ACL.

[21]  Raymond J. Mooney,et al.  Learning to Connect Language and Perception , 2008, AAAI.

[22]  B. Landau,et al.  “What” and “where” in spatial language and spatial cognition , 1993 .

[23]  Raymond J. Mooney,et al.  Learning to Interpret Natural Language Navigation Instructions from Observations , 2011, Proceedings of the AAAI Conference on Artificial Intelligence.

[24]  Maya Cakmak,et al.  Designing Interactions for Robot Active Learners , 2010, IEEE Transactions on Autonomous Mental Development.

[25]  Hadas Kress-Gazit,et al.  Robot-Initiated Specification Repair through Grounded Language Interaction , 2017, ArXiv.

[26]  Joyce Yue Chai,et al.  Embodied Collaborative Referring Expression Generation in Situated Human-Robot Interaction , 2015, 2015 10th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[27]  Matthias Scheutz,et al.  An Overview of the Distributed Integrated Cognition Affect and Reflection DIARC Architecture , 2018, Intelligent Systems, Control and Automation: Science and Engineering.

[28]  Beatrice Santorini,et al.  Building a Large Annotated Corpus of English: The Penn Treebank , 1993, CL.

[29]  John E. Laird,et al.  Learning Procedures from Interactive Natural Language Instructions , 1993, ICML.

[30]  Benjamin Kuipers,et al.  Walk the Talk: Connecting Language, Knowledge, and Action in Route Instructions , 2006, AAAI.

[31]  Karan K. Budhraja,et al.  Improving Grounded Language Acquisition Efficiency Using Interactive Labeling , 2016 .

[32]  Bilge Mutlu,et al.  A Storytelling Robot: Modeling and Evaluation of Human-like Gaze Behavior , 2006, 2006 6th IEEE-RAS International Conference on Humanoid Robots.

[33]  Aude Billard,et al.  Experiments on human-robot communication with Robota, an imitative learning and communicating doll robot , 1998 .

[34]  Eric Horvitz,et al.  Facilitating multiparty dialog with gaze, gesture, and speech , 2010, ICMI-MLMI '10.

[35]  Martha Palmer,et al.  Verbnet: a broad-coverage, comprehensive verb lexicon , 2005 .

[36]  Michael Beetz,et al.  Scaling perception towards autonomous object manipulation — in knowledge lies the power , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[37]  Chrystopher L. Nehaniv,et al.  Robot acquisition of lexical meaning - moving towards the two-word stage , 2012, 2012 IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL).

[38]  Takayuki Kanda,et al.  Providing route directions: Design of robot's utterance, gesture, and timing , 2009, 2009 4th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[39]  Hinrich Schütze,et al.  Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.

[40]  Ali Farhadi,et al.  IQA: Visual Question Answering in Interactive Environments , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[41]  Ross A. Knepper,et al.  Mapping Navigation Instructions to Continuous Control Actions with Position-Visitation Prediction , 2018, CoRL.

[42]  Demis Hassabis,et al.  Grounded Language Learning in a Simulated 3D World , 2017, ArXiv.

[43]  John Langford,et al.  Mapping Instructions and Visual Observations to Actions with Reinforcement Learning , 2017, EMNLP.

[44]  Maja J. Mataric,et al.  Designing a socially assistive robot for personalized number concepts learning in preschool children , 2015, 2015 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob).

[45]  Stefan Holzer,et al.  Towards autonomous robotic butlers: Lessons learned with the PR2 , 2011, 2011 IEEE International Conference on Robotics and Automation.

[46]  Luke S. Zettlemoyer,et al.  A Joint Model of Language and Perception for Grounded Attribute Learning , 2012, ICML.

[47]  Brian Scassellati,et al.  Discovering task constraints through observation and active learning , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[48]  E. Guizzo,et al.  The rise of the robot worker , 2012, IEEE Spectrum.

[49]  Matthias Scheutz,et al.  DIARC: A Testbed for Natural Human-Robot Interaction , 2006, AAAI.

[50]  Maya Cakmak,et al.  Programming by Demonstration with Situated Semantic Parsing , 2014, AAAI Fall Symposia.

[51]  Matthias Scheutz,et al.  Tell me when and why to do it! Run-time planner model updates via natural language instruction , 2012, 2012 7th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[52]  Matthias Scheutz,et al.  Learning to Recognize Novel Objects in One Shot through Human-Robot Interactions in Natural Language Dialogues , 2014, AAAI.

[53]  Manuel Lopes,et al.  Active Learning for Teaching a Robot Grounded Relational Symbols , 2013, IJCAI.

[54]  Cynthia Breazeal,et al.  Young Children Treat Robots as Informants , 2016, Top. Cogn. Sci..

[55]  Luc Steels,et al.  Aibo''s first words. the social learning of language and meaning. Evolution of Communication , 2002 .

[56]  Maya Cakmak,et al.  Designing robot learners that ask good questions , 2012, 2012 7th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[57]  Quoc V. Le,et al.  Distributed Representations of Sentences and Documents , 2014, ICML.

[58]  Michael Beetz,et al.  Controlled Natural Languages for language generation in artificial cognition , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[59]  Martin Kay,et al.  Syntactic Process , 1979, ACL.

[60]  Fei-Fei Li,et al.  Deep visual-semantic alignments for generating image descriptions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[61]  John E. Laird,et al.  The Soar Cognitive Architecture , 2012 .

[62]  Timothy Ha,et al.  Text2Action: Generative Adversarial Synthesis from Language to Action , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[63]  Illah R. Nourbakhsh,et al.  A survey of socially interactive robots , 2003, Robotics Auton. Syst..

[64]  Luke Fletcher,et al.  Multimodal interaction with an autonomous forklift , 2010, 2010 5th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[65]  Mark Steedman,et al.  Generative Models for Statistical Parsing with Combinatory Categorial Grammar , 2002, ACL.

[66]  Maya Cakmak,et al.  Robot Programming by Demonstration with situated spatial language understanding , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[67]  Stefanie Tellex,et al.  Grounding spatial language for video search , 2010, ICMI-MLMI '10.

[68]  Manuela M. Veloso,et al.  Learning environmental knowledge from task-based human-robot dialog , 2013, 2013 IEEE International Conference on Robotics and Automation.

[69]  Siobhan Chapman Logic and Conversation , 2005 .

[70]  Robert Dale,et al.  Computational Interpretations of the Gricean Maxims in the Generation of Referring Expressions , 1995, Cogn. Sci..

[71]  Albert S. Huang,et al.  Natural language command of an autonomous micro-air vehicle , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[72]  Stefan Lee,et al.  Embodied Question Answering , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[73]  Smaranda Muresan,et al.  Grounding English Commands to Reward Functions , 2015, Robotics: Science and Systems.

[74]  Peter Stone,et al.  Opportunistic Active Learning for Grounding Natural Language Descriptions , 2017, CoRL.

[75]  Robert L. Mercer,et al.  The Mathematics of Statistical Machine Translation: Parameter Estimation , 1993, CL.

[76]  Eitan M. Gurari,et al.  Introduction to the theory of computation , 1989 .

[77]  Krista A. Ehinger,et al.  SUN database: Large-scale scene recognition from abbey to zoo , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[78]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[79]  Qi Wu,et al.  Vision-and-Language Navigation: Interpreting Visually-Grounded Navigation Instructions in Real Environments , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[80]  Moritz Tenorth,et al.  Understanding and executing instructions for everyday manipulation tasks from the World Wide Web , 2010, 2010 IEEE International Conference on Robotics and Automation.

[81]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[82]  Peter Stone,et al.  Learning to Interpret Natural Language Commands through Human-Robot Dialog , 2015, IJCAI.

[83]  Michael Beetz,et al.  Everything robots always wanted to know about housework (but were afraid to ask) , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[84]  J. Gregory Trafton,et al.  ACT-R/E , 2013, HRI 2013.

[85]  Valentin Goranko,et al.  Logic in Computer Science: Modelling and Reasoning About Systems , 2007, J. Log. Lang. Inf..

[86]  John B. Lowe,et al.  The Berkeley FrameNet Project , 1998, ACL.

[87]  Peter Stone,et al.  Learning a Policy for Opportunistic Active Learning , 2018, EMNLP.

[88]  Holly A. Yanco,et al.  The Pyro Toolkit for AI and Robotics , 2006, AI Mag..

[89]  Irene Heim,et al.  Semantics in generative grammar , 1998 .

[90]  Mohit Shridhar,et al.  Interactive Visual Grounding of Referring Expressions for Human-Robot Interaction , 2018, Robotics: Science and Systems.

[91]  Alex Pentland,et al.  Learning words from sights and sounds: a computational model , 2002, Cogn. Sci..

[92]  Matthias Scheutz,et al.  Situated open world reference resolution for human-robot dialogue , 2016, 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[93]  Brian Scassellati,et al.  Situated Human–Robot Collaboration: predicting intent from grounded natural language , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[94]  Nicholas Roy,et al.  Efficient Grounding of Abstract Spatial Concepts for Natural Language Interaction with Robot Manipulators , 2016, Robotics: Science and Systems.

[95]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[96]  Hadas Kress-Gazit,et al.  Provably correct reactive control from natural language , 2015, Auton. Robots.

[97]  Andrea Lockerd Thomaz,et al.  Teachable robots: Understanding human teaching behavior to build more effective robot learners , 2008, Artif. Intell..

[98]  Ross A. Knepper,et al.  Asking for Help Using Inverse Semantics , 2014, Robotics: Science and Systems.

[99]  Angelo Cangelosi,et al.  Language Acquisition and Symbol Grounding Transfer with Neural Networks and Cognitive Robots , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[100]  Luke S. Zettlemoyer,et al.  Learning to Map Sentences to Logical Form: Structured Classification with Probabilistic Categorial Grammars , 2005, UAI.

[101]  Alan C. Schultz,et al.  Integrating natural language and gesture in a robotics domain , 1998, Proceedings of the 1998 IEEE International Symposium on Intelligent Control (ISIC) held jointly with IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA) Intell.

[102]  Christopher D. Manning,et al.  Generating Typed Dependency Parses from Phrase Structure Parses , 2006, LREC.

[103]  Beate Hamp,et al.  The Fundamental System of Spatial Schemas in Language , 2022 .

[104]  Marjorie Skubic,et al.  Modeling spatial referencing language for human-robot interaction , 2005, ROMAN 2005. IEEE International Workshop on Robot and Human Interactive Communication, 2005..

[105]  Shaohua Yang,et al.  Language to Action: Towards Interactive Task Learning with Physical Agents , 2018, IJCAI.

[106]  Kees van Deemter,et al.  Generating Expressions that Refer to Visible Objects , 2013, NAACL.

[107]  Jordan Zlatev,et al.  Semantics of Spatial Expressions , 2006 .

[108]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[109]  Patric Jensfelt,et al.  Large-scale semantic mapping and reasoning with heterogeneous modalities , 2012, 2012 IEEE International Conference on Robotics and Automation.

[110]  James H. Martin,et al.  Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition , 2000 .

[111]  Stefanie Tellex,et al.  Interpreting and Executing Recipes with a Cooking Robot , 2012, ISER.

[112]  Ivana Kruijff-Korbayová,et al.  A Portfolio Approach to Algorithm Selection , 2009, IJCAI.

[113]  Luke S. Zettlemoyer,et al.  Learning from Unscripted Deictic Gesture and Language for Human-Robot Interactions , 2014, AAAI.

[114]  David L. Roberts,et al.  Learning something from nothing: Leveraging implicit human feedback strategies , 2014, The 23rd IEEE International Symposium on Robot and Human Interactive Communication.

[115]  Hadas Kress-Gazit,et al.  A model for verifiable grounding and execution of complex natural language instructions , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[116]  Mark E. Campbell,et al.  Human-robot information sharing with structured language generation from probabilistic beliefs , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[117]  Brian Scassellati,et al.  Thinking Aloud with a Tutoring Robot to Enhance Learning , 2018, 2018 13th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[118]  Andrea Lockerd Thomaz,et al.  Timed Petri nets for fluent turn-taking over multimodal interaction resources in human-robot collaboration , 2016, Int. J. Robotics Res..

[119]  Yejin Choi,et al.  Mise en Place: Unsupervised Interpretation of Instructional Recipes , 2015, EMNLP.

[120]  Sean Andrist,et al.  Gaze and Attention Management for Embodied Conversational Agents , 2015, ACM Trans. Interact. Intell. Syst..

[121]  Stefanie Tellex,et al.  Sequence-to-Sequence Language Grounding of Non-Markovian Task Specifications , 2018, Robotics: Science and Systems.

[122]  Dieter Fox,et al.  Detection-based object labeling in 3D scenes , 2012, 2012 IEEE International Conference on Robotics and Automation.

[123]  Nicholas Roy,et al.  Efficient grounding of abstract spatial concepts for natural language interaction with robot platforms , 2018, Int. J. Robotics Res..

[124]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[125]  Nikolaos Mavridis,et al.  A review of verbal and non-verbal human-robot interactive communication , 2014, Robotics Auton. Syst..

[126]  Matthias Scheutz,et al.  Robust spoken instruction understanding for HRI , 2010, 2010 5th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[127]  Takayuki Kanda,et al.  Footing in human-robot conversations: How robots might shape participant roles using gaze cues , 2009, 2009 4th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[128]  Hadas Kress-Gazit,et al.  Make it So: Continuous, Flexible Natural Language Interaction with an Autonomous Robot , 2012, AAAI 2012.

[129]  Hadas Kress-Gazit,et al.  Synthesis for Robots: Guarantees and Feedback for Robot Behavior , 2018, Annu. Rev. Control. Robotics Auton. Syst..

[130]  Matthias Scheutz,et al.  Learning actions from human-robot dialogues , 2011, 2011 RO-MAN.

[131]  Stefanie Tellex,et al.  A natural language planner interface for mobile manipulators , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[132]  Paolo Valigi,et al.  Full-GRU Natural Language Video Description for Service Robotics Applications , 2018, IEEE Robotics and Automation Letters.

[133]  Kevin Lee,et al.  Tell me Dave: Context-sensitive grounding of natural language to manipulation instructions , 2014, Int. J. Robotics Res..

[134]  Stephanie Rosenthal,et al.  CoBots: Robust Symbiotic Autonomous Mobile Service Robots , 2015, IJCAI.

[135]  Dan Klein,et al.  Accurate Unlexicalized Parsing , 2003, ACL.

[136]  Li Fei-Fei,et al.  CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[137]  Benjamin Kuipers,et al.  Following natural language route instructions , 2007 .

[138]  Anthony G. Cohn,et al.  Natural Language Acquisition and Grounding for Embodied Robotic Systems , 2017, AAAI.

[139]  Paolo Fiorini,et al.  Search and Rescue Robotics , 2008, Springer Handbook of Robotics.

[140]  David L. Roberts,et al.  Learning behaviors via human-delivered discrete feedback: modeling implicit feedback strategies to speed up learning , 2015, Autonomous Agents and Multi-Agent Systems.

[141]  Li Fei-Fei,et al.  DenseCap: Fully Convolutional Localization Networks for Dense Captioning , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[142]  Maja J. Mataric,et al.  Using Socially Assistive Human–Robot Interaction to Motivate Physical Exercise for Older Adults , 2012, Proceedings of the IEEE.

[143]  Matthias Scheutz,et al.  What to do and how to do it: Translating natural language directives into temporal and dynamic logic representation for goal management and action execution , 2009, 2009 IEEE International Conference on Robotics and Automation.

[144]  Brian Scassellati,et al.  Teaching Language to Deaf Infants with a Robot and a Virtual Human , 2018, CHI.

[145]  C. Papadimitriou,et al.  Introduction to the Theory of Computation , 2018 .

[146]  Stefanie Tellex,et al.  Grounding spatial prepositions for video search , 2009, ICMI-MLMI '09.

[147]  Alan L. Yuille,et al.  Generation and Comprehension of Unambiguous Object Descriptions , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[148]  Dieter Fox,et al.  Following directions using statistical machine translation , 2010, 2010 5th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[149]  Michael A. Goodrich,et al.  Human-Robot Interaction: A Survey , 2008, Found. Trends Hum. Comput. Interact..

[150]  A. Wierzbicka Semantics: Primes and Universals , 1996 .

[151]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[152]  Brian Scassellati,et al.  Robotic vocabulary building using extension inference and implicit contrast , 2009, Artificial Intelligence.

[153]  Douglas B. Lenat,et al.  CYC: a large-scale investment in knowledge infrastructure , 1995, CACM.

[154]  Stephanie Rosenthal,et al.  CoBots: Collaborative robots servicing multi-floor buildings , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[155]  Matthew Marge,et al.  Comparing Heads-up, Hands-free Operation of Ground Robots to Teleoperation , 2011, Robotics: Science and Systems.

[156]  Kuniyuki Takahashi,et al.  Interactively Picking Real-World Objects with Unconstrained Spoken Language Instructions , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[157]  Andrea Lockerd Thomaz,et al.  Simon plays Simon says: The timing of turn-taking in an imitation game , 2011, 2011 RO-MAN.

[158]  Stefanie Tellex,et al.  Toward understanding natural language directions , 2010, 2010 5th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[159]  Ross A. Knepper,et al.  Following High-level Navigation Instructions on a Simulated Quadcopter with Imitation Learning , 2018, Robotics: Science and Systems.

[160]  Stefanie Tellex,et al.  Toward Information Theoretic Human-Robot Dialog , 2012, Robotics: Science and Systems.

[161]  Ross A. Knepper,et al.  IkeaBot: An autonomous multi-robot coordinated furniture assembly system , 2013, 2013 IEEE International Conference on Robotics and Automation.

[162]  Michael Beetz,et al.  Grounding Robot Plans from Natural Language Instructions with Incomplete World Knowledge , 2018, CoRL.

[163]  Cynthia Breazeal,et al.  Training a Robot via Human Feedback: A Case Study , 2013, ICSR.

[164]  Sanne H. G. van der Ven,et al.  Social Robots for Language Learning: A Review , 2018, Review of Educational Research.

[165]  Matthew R. Walter,et al.  Learning Semantic Maps from Natural Language Descriptions , 2013, Robotics: Science and Systems.

[166]  Hadas Kress-Gazit,et al.  Translating Structured English to Robot Controllers , 2008, Adv. Robotics.

[167]  Matthew R. Walter,et al.  Listen, Attend, and Walk: Neural Mapping of Navigational Instructions to Action Sequences , 2015, AAAI.

[168]  Jill Fain Lehman,et al.  Real-Time Natural Language Generation in NL-SOAR , 1994, INLG.

[169]  Wendy Ju,et al.  Beyond dirty, dangerous and dull: What everyday people think robots should do , 2008, 2008 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[170]  Dan Klein,et al.  A Game-Theoretic Approach to Generating Spatial Descriptions , 2010, EMNLP.

[171]  Maja J. Mataric,et al.  Using semantic fields to model dynamic spatial relations in a robot architecture for natural language instruction of service robots , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[172]  Stefanie Tellex,et al.  Accurately and Efficiently Interpreting Human-Robot Instructions of Varying Granularities , 2017, Robotics: Science and Systems.

[173]  Dejan Pangercic,et al.  Robotic roommates making pancakes , 2011, 2011 11th IEEE-RAS International Conference on Humanoid Robots.

[174]  Luke S. Zettlemoyer,et al.  Weakly Supervised Learning of Semantic Parsers for Mapping Instructions to Actions , 2013, TACL.

[175]  Eric Huang,et al.  A General‐purpose System for Teleoperation of the DRC‐HUBO Humanoid Robot , 2015, J. Field Robotics.

[176]  Eugene Charniak,et al.  A Maximum-Entropy-Inspired Parser , 2000, ANLP.

[177]  Matthew R. Walter,et al.  Understanding Natural Language Commands for Robotic Navigation and Mobile Manipulation , 2011, AAAI.

[178]  Cynthia Matuszek,et al.  Unsupervised Selection of Negative Examples for Grounded Language Learning , 2018, AAAI.

[179]  Matthew E. Taylor,et al.  Language and Policy Learning from Human-delivered Feedback , 2015 .

[180]  Jeffrey Mark Siskind,et al.  Grounding the Lexical Semantics of Verbs in Visual Perception using Force Dynamics and Event Logic , 1999, J. Artif. Intell. Res..

[181]  Luke S. Zettlemoyer,et al.  Learning to Parse Natural Language Commands to a Robot Control System , 2012, ISER.

[182]  Maja J. Mataric,et al.  Interpreting instruction sequences in spatial language discourse with pragmatics towards natural human-robot interaction , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[183]  I-Ming Chen,et al.  A Review on the Use of Robots in Education and Young Children , 2016, J. Educ. Technol. Soc..

[184]  Karen M. Feigh,et al.  Learning From Explanations Using Sentiment and Advice in RL , 2017, IEEE Transactions on Cognitive and Developmental Systems.

[185]  Jayant Krishnamurthy,et al.  Jointly Learning to Parse and Perceive: Connecting Natural Language to the Physical World , 2013, TACL.

[186]  Albert Ali Salah,et al.  An autonomous robotic exercise tutor for elderly people , 2017, Auton. Robots.

[187]  John E. Laird,et al.  Learning Grounded Language through Situated Interactive Instruction , 2012, AAAI Fall Symposium: Robots Learning Interactively from Human Teachers.

[188]  Peter Stone,et al.  Learning Multi-Modal Grounded Linguistic Semantics by Playing "I Spy" , 2016, IJCAI.

[189]  Maja J. Mataric,et al.  Evaluation of a spatial language interpretation framework for natural human-robot interaction with older adults , 2015, 2015 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN).