Deceptiveness and neutrality the ND family of fitness landscapes

When a considerable number of mutations have no effects on fitness values, the fitness landscape is said neutral. In order to study the interplay between neutrality, which exists in many real-world applications, and performances of metaheuristics, it is useful to design landscapes which make it possible to tune precisely neutral degree distribution. Even though many neutral landscape models have already been designed, none of them are general enough to create landscapes with specific neutral degree distributions. We propose three steps to design such landscapes: first using an algorithm we construct a landscape whose distribution roughly fits the target one, then we use a simulated annealing heuristic to bring closer the two distributions and finally we affect fitness values to each neutral network. Then using this new family of fitness landscapes we are able to highlight the interplay between deceptiveness and neutrality.

[1]  T. Jukes,et al.  The neutral theory of molecular evolution. , 2000, Genetics.

[2]  Julian Francis Miller,et al.  Cartesian genetic programming , 2000, GECCO '10.

[3]  M. Kimura Evolutionary Rate at the Molecular Level , 1968, Nature.

[4]  S. Gould,et al.  Punctuated equilibria: an alternative to phyletic gradualism , 1972 .

[5]  M. Huynen,et al.  Smoothness within ruggedness: the role of neutrality in adaptation. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Heinz Mühlenbein,et al.  The Science of Breeding and Its Application to the Breeder Genetic Algorithm (BGA) , 1993, Evolutionary Computation.

[7]  W. Fontana,et al.  Neutrality in Technological Landscapes , 2004 .

[8]  P. Stadler Spectral Landscape Theory , 1999 .

[9]  M. Clergue,et al.  GA-hard functions built by combination of Trap functions , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[10]  B. Derrida,et al.  Evolution in a flat fitness landscape , 1991 .

[11]  Julian Francis Miller,et al.  Information Characteristics and the Structure of Landscapes , 2000, Evolutionary Computation.

[12]  Victor J. Rayward-Smith,et al.  Fitness Distance Correlation and Ridge Functions , 1998, PPSN.

[13]  T. Ohta THE NEARLY NEUTRAL THEORY OF MOLECULAR EVOLUTION , 1992 .

[14]  Hiroshi Yokoi,et al.  A Gate-Level EHW Chip: Implementing GA Operations and Reconfigurable Hardware on a Single LSI , 1998, ICES.

[15]  Chad W. Seys,et al.  Evolving Walking : The Anatomy of an Evolutionary Search , 2004 .

[16]  M. Huynen,et al.  Neutral evolution of mutational robustness. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[17]  E. Bornberg-Bauer,et al.  Modeling evolutionary landscapes: mutational stability, topology, and superfunnels in sequence space. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Hitoshi Iba,et al.  Machine Learning Approach to Gate-Level Evolvable Hardware , 1996, ICES.

[19]  Vesselin K. Vassilev,et al.  Smoothness, ruggedness and neutrality of fitness landscapes: from theory to application , 2003 .

[20]  Julian F. Miller,et al.  Designing Electronic Circuits Using Evolutionary Algorithms. Arithmetic Circuits: A Case Study , 2007 .

[21]  Stuart A. Kauffman,et al.  ORIGINS OF ORDER , 2019, Origins of Order.

[22]  J. Crutchfield,et al.  Optimizing Epochal Evolutionary Search: Population-Size Dependent Theory , 1998, Machine Learning.

[23]  Marc Ebner,et al.  How neutral networks influence evolvability , 2001, Complex..

[24]  T. Ohta Slightly Deleterious Mutant Substitutions in Evolution , 1973, Nature.

[25]  Claus O. Wilke,et al.  Adaptive evolution on neutral networks , 2001, Bulletin of mathematical biology.

[26]  Julian Francis Miller,et al.  The Advantages of Landscape Neutrality in Digital Circuit Evolution , 2000, ICES.

[27]  Tim Jones Evolutionary Algorithms, Fitness Landscapes and Search , 1995 .

[28]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[29]  T. Smith,et al.  Neutrality and ruggedness in robot landscapes , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[30]  J. L. King,et al.  Non-Darwinian evolution. , 1969, Science.

[31]  S. Vijayakumar,et al.  Evolving Walking: The Anatomy of an Evolutionary Search , 2004 .

[32]  Wolfgang Banzhaf,et al.  Genotype-Phenotype-Mapping and Neutral Variation - A Case Study in Genetic Programming , 1994, PPSN.

[33]  L. Barnett Ruggedness and neutrality—the NKp family of fitness landscapes , 1998 .

[34]  M. Huynen Exploring phenotype space through neutral evolution , 1996, Journal of Molecular Evolution.

[35]  Kalyanmoy Deb,et al.  Analyzing Deception in Trap Functions , 1992, FOGA.

[36]  Melanie Mitchell,et al.  The royal road for genetic algorithms: Fitness landscapes and GA performance , 1991 .

[37]  M. Newman,et al.  Effects of neutral selection on the evolution of molecular species , 1997, adap-org/9712005.

[38]  Vesselin K. Vassilev,et al.  Digital circuit evolution and fitness landscapes , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[39]  Katsunori Shimohara,et al.  AdAM: a hardware evolutionary system , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[40]  Stephanie Forrest,et al.  Proceedings of the 5th International Conference on Genetic Algorithms , 1993 .

[41]  Hitoshi Iba,et al.  Evolving hardware with genetic learning: a first step towards building a Darwin machine , 1993 .

[42]  Inman Harvey,et al.  Through the Labyrinth Evolution Finds a Way: A Silicon Ridge , 1996, ICES.

[43]  Julian Francis Miller,et al.  Finding Needles in Haystacks Is Not Hard with Neutrality , 2002, EuroGP.

[44]  P. Stadler Fitness Landscapes , 1993 .

[45]  J. Crutchfield,et al.  Optimizing Epochal Evolutionary Search: Population-Size Dependent Theory , 1998, Machine-mediated learning.

[46]  Günter P. Wagner,et al.  Complex Adaptations and the Evolution of Evolvability , 2005 .