High-Level Feature Detection with Forests of Fuzzy Decision Trees combined with the RankBoost

In this paper, we present the methodology we applied in our submission to the NIST TRECVID’2007 evaluation. We participated in the High-level Feature Extraction task. Our approach is based on the use of a Forest of Fuzzy Decision Trees combined with the RankBoost algorithm.

[1]  Alain Pitiot,et al.  Expert knowledge-guided segmentation system for brain MRI , 2003, NeuroImage.

[2]  Guido Gerig,et al.  Elastic model-based segmentation of 3-D neuroradiological data sets , 1999, IEEE Transactions on Medical Imaging.

[3]  Hervé Delingette,et al.  General Object Reconstruction Based on Simplex Meshes , 1999, International Journal of Computer Vision.

[4]  Christophe Marsala,et al.  University of Paris 6 at TRECVID 2005: High-Level Feature Extraction , 2005, TRECVID.

[5]  Demetri Terzopoulos,et al.  Multiresolution computation of visible-surface representations , 1984 .

[6]  Olivier D. Faugeras,et al.  Statistical shape influence in geodesic active contours , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[7]  D. Chopp Computing Minimal Surfaces via Level Set Curvature Flow , 1993 .

[8]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[10]  Eam Khwang Teoh,et al.  A novel framework for automated 3D PDM construction using deformable models , 2005, SPIE Medical Imaging.

[11]  Laurent D. Cohen,et al.  Finite Element Methods for active contour models and balloons from 2-D to 3-D , 1992, CVPR 1992.

[12]  Christian Petersohn Fraunhofer HHI at TRECVID 2004: Shot Boundary Detection System , 2004, TRECVID.

[13]  C. Marsala,et al.  Apprentissage inductif en presence de donnees imprecises : construction et utilisation d'arbres de decision flous , 1998 .

[14]  Michel Barlaud,et al.  Segmentation of Vectorial Image Features Using Shape Gradients and Information Measures , 2006, Journal of Mathematical Imaging and Vision.

[15]  Christophe Marsala,et al.  University of Paris 6 at TRECVID 2006: Forest of Fuzzy Decision Trees for High-Level Feature Extraction , 2006, TRECVID.

[16]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[17]  Yoram Singer,et al.  An Efficient Boosting Algorithm for Combining Preferences by , 2013 .

[18]  Johan Montagnat,et al.  4D deformable models with temporal constraints: application to 4D cardiac image segmentation , 2005, Medical Image Anal..

[19]  Cristian Lorenz,et al.  Generation of Point-Based 3D Statistical Shape Models for Anatomical Objects , 2000, Comput. Vis. Image Underst..

[20]  James A. Sethian,et al.  Flow under Curvature: Singularity Formation, Minimal Surfaces, and Geodesics , 1993, Exp. Math..

[21]  Katsushi Ikeuchi,et al.  Shape representation and image segmentation using deformable surfaces , 1992, Image Vis. Comput..

[22]  Hans Henrik Thodberg,et al.  Minimum Description Length Shape and Appearance Models , 2003, IPMI.

[23]  Paul Over,et al.  Evaluation campaigns and TRECVid , 2006, MIR '06.

[24]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..