Photometric Stereo Using Sparse Bayesian Regression for General Diffuse Surfaces

Most conventional algorithms for non-Lambertian photometric stereo can be partitioned into two categories. The first category is built upon stable outlier rejection techniques while assuming a dense Lambertian structure for the inliers, and thus performance degrades when general diffuse regions are present. The second utilizes complex reflectance representations and non-linear optimization over pixels to handle non-Lambertian surfaces, but does not explicitly account for shadows or other forms of corrupting outliers. In this paper, we present a purely pixel-wise photometric stereo method that stably and efficiently handles various non-Lambertian effects by assuming that appearances can be decomposed into a sparse, non-diffuse component (e.g., shadows, specularities, etc.) and a diffuse component represented by a monotonic function of the surface normal and lighting dot-product. This function is constructed using a piecewise linear approximation to the inverse diffuse model, leading to closed-form estimates of the surface normals and model parameters in the absence of non-diffuse corruptions. The latter are modeled as latent variables embedded within a hierarchical Bayesian model such that we may accurately compute the unknown surface normals while simultaneously separating diffuse from non-diffuse components. Extensive evaluations are performed that show state-of-the-art performance using both synthetic and real-world images.

[1]  Robert L. Cook,et al.  A Reflectance Model for Computer Graphics , 1987, TOGS.

[2]  Ravi Ramamoorthi,et al.  A theory of differential photometric stereo for unknown isotropic BRDFs , 2011, CVPR 2011.

[3]  Katsushi Ikeuchi,et al.  A biquadratic reflectance model for radiometric image analysis , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Alessio Del Bue,et al.  Bilinear Modeling via Augmented Lagrange Multipliers (BALM) , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Tai-Pang Wu,et al.  Dense photometric stereo using a mirror sphere and graph cut , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[6]  Steven A. Shafer,et al.  Using color to separate reflection components , 1985 .

[7]  Steven M. Seitz,et al.  Example-based photometric stereo: shape reconstruction with general, varying BRDFs , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Maria Petrou,et al.  Recursive photometric stereo when multiple shadows and highlights are present , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Ravi Ramamoorthi,et al.  What an image reveals about material reflectance , 2011, 2011 International Conference on Computer Vision.

[10]  Sang Wook Lee,et al.  Photometric Stereo from Maximum Feasible Lambertian Reflections , 2010, ECCV.

[11]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[12]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[13]  Kiyoharu Aizawa,et al.  Robust photometric stereo using sparse regression , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Steven M. Seitz,et al.  Shape and spatially-varying BRDFs from photometric stereo , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[15]  Szymon Rusinkiewicz,et al.  A New Change of Variables for Efficient BRDF Representation , 1998, Rendering Techniques.

[16]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevance Vector Machine , 2001 .

[17]  Takeshi Shakunaga,et al.  Analysis of photometric factors based on photometric linearization. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[18]  Bhaskar D. Rao,et al.  Latent Variable Bayesian Models for Promoting Sparsity , 2011, IEEE Transactions on Information Theory.

[19]  David P. Wipf,et al.  Iterative Reweighted 1 and 2 Methods for Finding Sparse Solutions , 2010, IEEE J. Sel. Top. Signal Process..

[20]  Takahiro Okabe,et al.  Shape Reconstruction Based on Similarity in Radiance Changes under Varying Illumination , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[21]  Wojciech Matusik,et al.  A data-driven reflectance model , 2003, ACM Trans. Graph..

[22]  Maria Petrou,et al.  The 4-Source Photometric Stereo Technique for Three-Dimensional Surfaces in the Presence of Highlights and Shadows , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Takayuki Okatani,et al.  Optimal integration of photometric and geometric surface measurements using inaccurate reflectance/illumination knowledge , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Yongtian Wang,et al.  Robust Photometric Stereo via Low-Rank Matrix Completion and Recovery , 2010, ACCV.

[25]  Paolo Favaro,et al.  A closed-form solution to uncalibrated photometric stereo via diffuse maxima , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[26]  Donald P. Greenberg,et al.  Non-linear approximation of reflectance functions , 1997, SIGGRAPH.

[27]  Todd E. Zickler,et al.  Blind Reflectometry , 2010, ECCV.

[28]  Katsushi Ikeuchi,et al.  Consensus photometric stereo , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[29]  Roberto Cipolla,et al.  Multiview Photometric Stereo , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Katsushi Ikeuchi,et al.  Median Photometric Stereo as Applied to the Segonko Tumulus and Museum Objects , 2009, International Journal of Computer Vision.

[31]  Rama Chellappa,et al.  What Is the Range of Surface Reconstructions from a Gradient Field? , 2006, ECCV.

[32]  Luc Van Gool,et al.  Photometric stereo with coherent outlier handling and confidence estimation , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[33]  Berthold K. P. Horn,et al.  Determining Shape and Reflectance Using Multiple Images , 1978 .

[34]  David J. Kriegman,et al.  Isotropy, Reciprocity and the Generalized Bas-Relief Ambiguity , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[35]  Robert J. Woodham,et al.  Photometric method for determining surface orientation from multiple images , 1980 .

[36]  David J. Kriegman,et al.  Photometric stereo with non-parametric and spatially-varying reflectance , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[37]  Jiaya Jia,et al.  Efficient photometric stereo on glossy surfaces with wide specular lobes , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[38]  David J. Kriegman,et al.  Beyond Lambert: reconstructing specular surfaces using color , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[39]  Tien-Tsin Wong,et al.  Dense photometric stereo using tensorial belief propagation , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[40]  Athinodoros S. Georghiades,et al.  Incorporating the Torrance and Sparrow model of reflectance in uncalibrated photometric stereo , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[41]  Gregory J. Ward,et al.  Measuring and modeling anisotropic reflection , 1992, SIGGRAPH.

[42]  David J. Kriegman,et al.  Toward Reconstructing Surfaces With Arbitrary Isotropic Reflectance : A Stratified Photometric Stereo Approach , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[43]  David J. Kriegman,et al.  ShadowCuts: Photometric Stereo with Shadows , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[44]  K. Torrance,et al.  Theory for off-specular reflection from roughened surfaces , 1967 .

[45]  E. Vieth Fitting piecewise linear regression functions to biological responses. , 1989, Journal of applied physiology.

[46]  Hanspeter Pfister,et al.  Visibility Subspaces: Uncalibrated Photometric Stereo with Shadows , 2010, ECCV.

[47]  Miao Liao,et al.  Interreflection removal for photometric stereo by using spectrum-dependent albedo , 2011, CVPR 2011.

[48]  Katsushi Ikeuchi,et al.  Elevation Angle from Reflectance Monotonicity: Photometric Stereo for General Isotropic Reflectances , 2012, ECCV.

[49]  H. Damasio,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence: Special Issue on Perceptual Organization in Computer Vision , 1998 .

[50]  R. Cipolla,et al.  Multi-view photometric stereo , 2007 .

[51]  Simon Fuhrmann,et al.  Photometric stereo for outdoor webcams , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[52]  Long Quan,et al.  The Geometry of Reflectance Symmetries , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.