Identifying physical properties of deformable objects by using particle filters

This paper presents a new approach for estimating physical properties of deformable models from experimental measurements. In contrast to most previous work, we introduce a new method based on particle filters which identifies the different stiffness properties for spring-based models. This approach addresses some important limitations encountered with gradient descent techniques which often converge towards ill solutions or remain fixed in local minima conditions.

[1]  A. Nurnberger,et al.  A problem specific recurrent neural network for the description and simulation of dynamic spring models , 1998, 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227).

[2]  Dieter Fox,et al.  Adapting the Sample Size in Particle Filters Through KLD-Sampling , 2003, Int. J. Robotics Res..

[3]  Dinesh K. Pai,et al.  Scanning physical interaction behavior of 3D objects , 2001, SIGGRAPH.

[4]  Oussama Khatib,et al.  Interactive rendering of deformable objects based on a filling sphere modeling approach , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[5]  Michael Beuve,et al.  New Mass-Spring System Integrating Elasticity Parameters in 2D , 2007 .

[6]  Nikos Paragios,et al.  Registration of 3D Angiographic and X-Ray Images Using Sequential Monte Carlo Sampling , 2005, CVBIA.

[7]  Dinesh K. Pai,et al.  Robotic acquisition of deformable models , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[8]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[9]  Demetri Terzopoulos,et al.  Modelling and animating faces using scanned data , 1991, Comput. Animat. Virtual Worlds.

[10]  Gábor Székely,et al.  Simultaneous Topology and Stiffness Identification for Mass-Spring Models Based on FEM Reference Deformations , 2004, MICCAI.

[11]  François Conti,et al.  CHAI: An Open-Source Library for the Rapid Development of Haptic Scenes , 2005 .

[12]  Simon J. Godsill,et al.  On sequential simulation-based methods for Bayesian filtering , 1998 .

[13]  Sebastian Thrun,et al.  Particle Filters in Robotics , 2002, UAI.

[14]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[15]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[16]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[17]  L. Segerlind Applied Finite Element Analysis , 1976 .

[18]  Sebastian Thrun,et al.  FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges , 2003, IJCAI.

[19]  Gábor Székely,et al.  Mesh Topology Identification for Mass-Spring Models , 2003, MICCAI.

[20]  Franck Davoine,et al.  Facial action tracking using particle filters and active appearance models , 2005, sOc-EUSAI '05.

[21]  Oussama Khatib,et al.  Bayesian estimation for autonomous object manipulation based on tactile sensors , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[22]  Nikos Paragios,et al.  Monte-carlo Sampling, Particle Filters and Segmentation of Coronaries , 2005 .

[23]  Randy E. Ellis,et al.  Surface-Based Registration with a Particle Filter , 2004, MICCAI.