Analysis of fMRI data sampled from Large Populations: Statistical and Methodological Issues

A method and apparatus for highly efficient use of higher-order diffraction beam in holography. The thermoplastic hologram (10) is recorded at a recording angle ((theta)R) between two coherent beams (12, 14) equal to a first-order diffraction angle ((theta)1) corresponding to the angle ((theta)2) of the desired higher-order beam (18) set to the angular peak (22) of diffraction efficiency (20) of the material of the hologram. On read-out, the desired higher-order beam is read. By use of the invention, the intensity of a higher-order beam can be tuned and made nearly equal to that of the first-order beam. Thereby, useful non-linear holographic systems, such as an associative memory (FIG. 4), can be practically implemented.

[1]  Jean-Baptiste Poline,et al.  Group analysis in functional neuroimaging: selecting subjects using similarity measures , 2003, NeuroImage.

[2]  Gabriele Lohmann,et al.  Bayesian second-level analysis of functional magnetic resonance images , 2003, NeuroImage.

[3]  Mark Jenkinson,et al.  A consistent relationship between local white matter architecture and functional specialisation in medial frontal cortex , 2006, NeuroImage.

[4]  J D Watson,et al.  Nonparametric Analysis of Statistic Images from Functional Mapping Experiments , 1996, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[5]  Kevin Murphy,et al.  An empirical investigation into the number of subjects required for an event-related fMRI study , 2004, NeuroImage.

[6]  Thomas E. Nichols,et al.  Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate , 2002, NeuroImage.

[7]  Nicole A Lazar,et al.  Assessing the sensitivity of fMRI group maps , 2004, NeuroImage.

[8]  Jean-Baptiste Poline,et al.  Improving Sensitivity and Reliability of fMRI Group Studies through High Level Combination of Individual Subjects Results , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[9]  Nicholas Ayache,et al.  Improved Detection Sensitivity in Functional MRI Data Using a Brain Parcelling Technique , 2002, MICCAI.

[10]  Stephen M. Smith,et al.  General multilevel linear modeling for group analysis in FMRI , 2003, NeuroImage.

[11]  Gary H Glover,et al.  Estimating sample size in functional MRI (fMRI) neuroimaging studies: Statistical power analyses , 2002, Journal of Neuroscience Methods.

[12]  John A. D. Aston,et al.  A method for generating reproducible evidence in fMRI studies , 2006, NeuroImage.

[13]  Ronald R. Peeters,et al.  Mapping multiple visual areas in the human brain with a short fMRI sequence , 2006, NeuroImage.

[14]  Karl J. Friston,et al.  Posterior probability maps and SPMs , 2003, NeuroImage.

[15]  D. Louis Collins,et al.  Non-linear Cerebral Registration with Sulcal Constraints , 1998, MICCAI.

[16]  Karl J. Friston,et al.  How Many Subjects Constitute a Study? , 1999, NeuroImage.

[17]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[18]  Christine Fennema-Notestine,et al.  More “mapping” in brain mapping: Statistical comparison of effects , 2003, Human brain mapping.

[19]  Jean-Baptiste Poline,et al.  Dealing with the shortcomings of spatial normalization: Multi‐subject parcellation of fMRI datasets , 2006, Human brain mapping.

[20]  Thomas E. Nichols,et al.  Validating cluster size inference: random field and permutation methods , 2003, NeuroImage.

[21]  John Suckling,et al.  Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain , 1999, IEEE Transactions on Medical Imaging.

[22]  Bertrand Thirion,et al.  Robust statistics for nonparametric group analysis in fMRI , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[23]  C. Genovese,et al.  Estimating test‐retest reliability in functional MR imaging I: Statistical methodology , 1997, Magnetic resonance in medicine.

[24]  Keith J. Worsley,et al.  An improved theoretical P value for SPMs based on discrete local maxima , 2005, NeuroImage.

[25]  Karl J. Friston,et al.  Classical and Bayesian Inference in Neuroimaging: Theory , 2002, NeuroImage.

[26]  Ranjan Maitra,et al.  Test‐retest reliability estimation of functional MRI data , 2002, Magnetic resonance in medicine.

[27]  S. C. Strother,et al.  The Quantitative Evaluation of Functional Neuroimaging Experiments: Mutual Information Learning Curves , 2002, NeuroImage.

[28]  Charles R. G. Guttmann,et al.  Functional MRI of auditory verbal working memory: long-term reproducibility analysis , 2004, NeuroImage.

[29]  Alan C. Evans,et al.  A general statistical analysis for fMRI data , 2000, NeuroImage.

[30]  P. Cheng,et al.  Bridging Functional MR Images and Scientific Inference: Reproducibility Maps , 2003, Journal of Cognitive Neuroscience.

[31]  Essa Yacoub,et al.  The Evaluation of Preprocessing Choices in Single-Subject BOLD fMRI Using NPAIRS Performance Metrics , 2003, NeuroImage.

[32]  S C Williams,et al.  Generic brain activation mapping in functional magnetic resonance imaging: a nonparametric approach. , 1997, Magnetic resonance imaging.

[33]  Gary F. Egan,et al.  Evaluating subject specific preprocessing choices in multisubject fMRI data sets using data-driven performance metrics , 2003, NeuroImage.

[34]  D. Louis Collins,et al.  Retrospective evaluation of intersubject brain registration , 2003, IEEE Transactions on Medical Imaging.

[35]  B. Thirion,et al.  Combined permutation test and mixed‐effect model for group average analysis in fMRI , 2006, Human brain mapping.

[36]  L. K. Hansen,et al.  The Quantitative Evaluation of Functional Neuroimaging Experiments: The NPAIRS Data Analysis Framework , 2000, NeuroImage.

[37]  Jean-Baptiste Poline,et al.  Finding Landmarks in the Functional Brain: Detection and Use for Group Characterization , 2005, MICCAI.

[38]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[39]  Stephen M Smith,et al.  Variability in fMRI: A re‐examination of inter‐session differences , 2005, Human brain mapping.