Optical flow estimation in cardiac CT images using the steered Hermite transform

This paper describes a new method to estimate the heart's motion in computer tomography images with the inclusion of a bio-inspired image representation model. Our proposal is based on the polynomial decomposition of each of the images using the steered Hermite transform as a representation of the local characteristics of images from an perceptual approach within a multiresolution scheme. The Hermite transform is a model that incorporates some of the more important properties of the first stages of the human visual system, such as the overlapping Gaussian receptive fields, the Gaussian derivative model of early vision and the multiresolution analysis. We propose an approach for optical flow estimation that incorporates image structure information extracted from the steered Hermite coefficients, that is later used as local motion constraints in a differential estimation method that involves several of the constraints seen in the current differential methods, which allows obtaining accurate flows. Considering the importance of understanding the movement of certain structures such as left ventricular and myocardial wall for better medical diagnosis, our main goal is to find an estimation method useful to assist diagnosis tasks in computer tomography images.

[1]  Boris Escalante-Ramírez,et al.  Optic-flow information extraction with directional Gaussian-derivatives , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[2]  Thomas Flohr,et al.  Comprar Multi-slice and Dual-source CT in Cardiac Imaging · Principles - Protocols - Indications - Outlook | Ohnesorge, Bernd M. | 9783540255239 | Springer , 2007 .

[3]  Richard A. Young,et al.  SIMULATION OF HUMAN RETINAL FUNCTION WITH THE GAUSSIAN DERIVATIVE MODEL. , 1986 .

[4]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[5]  Rufin van Rullen,et al.  Rate Coding Versus Temporal Order Coding: What the Retinal Ganglion Cells Tell the Visual Cortex , 2001, Neural Computation.

[6]  Joachim Weickert,et al.  Towards ultimate motion estimation: combining highest accuracy with real-time performance , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[7]  Boris Escalante-Ramírez,et al.  Advanced modeling of visual information processing: A multi-resolution directional-oriented image transform based on Gaussian derivatives , 2005, Signal Process. Image Commun..

[8]  R. Hetherington The Perception of the Visual World , 1952 .

[9]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Roland Wilson,et al.  The Uncertainty Principle in Image Processing , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  José Luis Silván-Cárdenas,et al.  The multiscale Hermite transform for local orientation analysis , 2006, IEEE Transactions on Image Processing.

[12]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[13]  Rama Chellappa,et al.  A General Motion Model and Spatio-Temporal Filters for Computing Optical Flow , 1994, International Journal of Computer Vision.

[14]  H. Barlow,et al.  A model for the economical encoding of the visual image in cerebral cortex , 2004, Biological Cybernetics.

[15]  Boris Escalante-Ramírez,et al.  Rotation-invariant texture features from the steered Hermite transform , 2011, Pattern Recognit. Lett..

[16]  Patrick Pérez,et al.  A multigrid approach for hierarchical motion estimation , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[17]  Thomas Flohr,et al.  Principles of Multi-slice Cardiac CT Imaging , 2007 .

[18]  Saleh Saleh,et al.  Cardiac Mechanics Revisited: The Relationship of Cardiac Architecture to Ventricular Function , 2008, Circulation.

[19]  Patrick Pérez,et al.  Hierarchical Estimation and Segmentation of Dense Motion Fields , 2002, International Journal of Computer Vision.

[20]  Giacomo Luccichenti,et al.  Sixteen-row multislice computed tomography: basic concepts, protocols, and enhanced clinical applications. , 2004, Seminars in ultrasound, CT, and MR.

[21]  R A Young,et al.  The Gaussian derivative model for spatial vision: I. Retinal mechanisms. , 1988, Spatial vision.

[22]  P. Anandan,et al.  A computational framework and an algorithm for the measurement of visual motion , 1987, International Journal of Computer Vision.

[23]  J. Gibson The Senses Considered As Perceptual Systems , 1967 .

[24]  Richard D. White,et al.  CT of the heart: principles, advances, clinical uses. , 2005, Cleveland Clinic journal of medicine.

[25]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[26]  C. Becker,et al.  Multidetector-row CT of the heart. , 2003, Radiologic clinics of North America.

[27]  Andrea J. van Doorn,et al.  Generic Neighborhood Operators , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  G. Szegö Recent Advances and Open Questions on the Asymptotic Expansions of Orthogonal Polynomials , 1959 .

[29]  Johan Wiklund,et al.  Multidimensional Orientation Estimation with Applications to Texture Analysis and Optical Flow , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Hans-Hellmut Nagel,et al.  An Investigation of Smoothness Constraints for the Estimation of Displacement Vector Fields from Image Sequences , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Jeffrey A. Bloom,et al.  A Gaussian derivative-based transform , 1996, IEEE Trans. Image Process..

[32]  Michel Barlaud,et al.  Two deterministic half-quadratic regularization algorithms for computed imaging , 1994, Proceedings of 1st International Conference on Image Processing.

[33]  Brendan McCane,et al.  Recovering Motion Fields: An Evaluation of Eight Optical Flow Algorithms , 1998, BMVC.

[34]  Hui Cheng,et al.  Bilateral Filtering-Based Optical Flow Estimation with Occlusion Detection , 2006, ECCV.

[35]  J. Weickert,et al.  Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods , 2005 .

[36]  Thomas Brox,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Highly Accurate Optic Flow Computation with Theoretically Justified Warping Highly Accurate Optic Flow Computation with Theoretically Justified Warping , 2022 .

[37]  Roman Fischbach,et al.  Cardiac and Cardiothoracic Anatomy in CT , 2007 .

[38]  A. Verri,et al.  A computational approach to motion perception , 1988, Biological Cybernetics.

[39]  R. Young GAUSSIAN DERIVATIVE THEORY OF SPATIAL VISION: ANALYSIS OF CORTICAL CELL RECEPTIVE FIELD LINE-WEIGHTING PROFILES. , 1985 .

[40]  Jean-Bernard Martens The Hermite transform-applications , 1990, IEEE Trans. Acoust. Speech Signal Process..

[41]  Jean-Bernard Martens,et al.  Image representation and compression with steered Hermite transforms , 1997, Signal Process..

[42]  U. Joseph Schoepf CT of the Heart , 2005 .

[43]  Joachim Weickert,et al.  Combining the Advantages of Local and Global Optic Flow Methods , 2002, DAGM-Symposium.

[44]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[45]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[46]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[47]  Richard Szeliski,et al.  A Database and Evaluation Methodology for Optical Flow , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[48]  R. W. Rodieck Quantitative analysis of cat retinal ganglion cell response to visual stimuli. , 1965, Vision research.

[49]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[50]  Jean-Bernard Martens,et al.  The Hermite transform-theory , 1990, IEEE Trans. Acoust. Speech Signal Process..

[51]  John L. Barron,et al.  Image Reconstruction Error for Optical Flow , 1995, Research in Computer and Robot Vision.

[52]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[53]  Martin D. Levine,et al.  Vision in Man and Machine , 1985 .

[54]  Timo Kohlberger,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Variational Optic Flow Computation in Real-time Variational Optic Flow Computation in Real-time , 2022 .