Learning Adaptive Discriminative Correlation Filters via Temporal Consistency Preserving Spatial Feature Selection for Robust Visual Object Tracking

With efficient appearance learning models, discriminative correlation filter (DCF) has been proven to be very successful in recent video object tracking benchmarks and competitions. However, the existing DCF paradigm suffers from two major issues, i.e., spatial boundary effect and temporal filter degradation. To mitigate these challenges, we propose a new DCF-based tracking method. The key innovations of the proposed method include adaptive spatial feature selection and temporal consistent constraints, with which the new tracker enables joint spatial-temporal filter learning in a lower dimensional discriminative manifold. More specifically, we apply structured spatial sparsity constraints to multi-channel filters. Consequently, the process of learning spatial filters can be approximated by the lasso regularization. To encourage temporal consistency, the filter model is restricted to lie around its historical value and updated locally to preserve the global structure in the manifold. Last, a unified optimization framework is proposed to jointly select temporal consistency preserving spatial features and learn discriminative filters with the augmented Lagrangian method. Qualitative and quantitative evaluations have been conducted on a number of well-known benchmarking datasets such as OTB2013, OTB50, OTB100, Temple-Colour, UAV123, and VOT2018. The experimental results demonstrate the superiority of the proposed method over the state-of-the-art approaches.

[1]  Jiri Matas,et al.  Discriminative Correlation Filter with Channel and Spatial Reliability , 2017, CVPR.

[2]  Ling Shao,et al.  Recent advances and trends in visual tracking: A review , 2011, Neurocomputing.

[3]  Lei Zhang,et al.  Learning Support Correlation Filters for Visual Tracking , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Julien Mairal,et al.  Structured sparsity through convex optimization , 2011, ArXiv.

[5]  Michael Felsberg,et al.  The Visual Object Tracking VOT2015 Challenge Results , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[6]  Michael Felsberg,et al.  The Sixth Visual Object Tracking VOT2018 Challenge Results , 2018, ECCV Workshops.

[7]  Michael Felsberg,et al.  Unveiling the Power of Deep Tracking , 2018, ECCV.

[8]  Zhang Yi,et al.  Robust Subspace Clustering via Thresholding Ridge Regression , 2015, AAAI.

[9]  Michael Felsberg,et al.  Adaptive Color Attributes for Real-Time Visual Tracking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Jian Yang,et al.  A Two-Phase Test Sample Sparse Representation Method for Use With Face Recognition , 2011, IEEE Transactions on Circuits and Systems for Video Technology.

[11]  Simon Lucey,et al.  Learning Background-Aware Correlation Filters for Visual Tracking , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[12]  Changsheng Xu,et al.  Multi-task Correlation Particle Filter for Robust Object Tracking , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Daniela M. Witten,et al.  An Introduction to Statistical Learning: with Applications in R , 2013 .

[14]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[15]  Cordelia Schmid,et al.  Learning Color Names for Real-World Applications , 2009, IEEE Transactions on Image Processing.

[16]  Marco F. Duarte,et al.  Masking Strategies for Image Manifolds , 2016, IEEE Transactions on Image Processing.

[17]  Simone Calderara,et al.  Visual Tracking: An Experimental Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Silvio Savarese,et al.  Learning to Track at 100 FPS with Deep Regression Networks , 2016, ECCV.

[19]  Erik Blasch,et al.  Encoding color information for visual tracking: Algorithms and benchmark , 2015, IEEE Transactions on Image Processing.

[20]  Wenbing Tao,et al.  Convolutional Regression for Visual Tracking , 2016, IEEE Transactions on Image Processing.

[21]  Haibin Ling,et al.  Real time robust L1 tracker using accelerated proximal gradient approach , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Bernard Ghanem,et al.  Context-Aware Correlation Filter Tracking , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Zhe Chen,et al.  MUlti-Store Tracker (MUSTer): A cognitive psychology inspired approach to object tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Dacheng Tao,et al.  Robust Visual Tracking Revisited: From Correlation Filter to Template Matching , 2018, IEEE Transactions on Image Processing.

[27]  Luca Bertinetto,et al.  Fully-Convolutional Siamese Networks for Object Tracking , 2016, ECCV Workshops.

[28]  Uwe D. Hanebeck,et al.  Template matching using fast normalized cross correlation , 2001, SPIE Defense + Commercial Sensing.

[29]  Guanghui Wang,et al.  Real-Time Visual Tracking: Promoting the Robustness of Correlation Filter Learning , 2016, ECCV.

[30]  Narendra Ahuja,et al.  Robust Visual Tracking via Structured Multi-Task Sparse Learning , 2012, International Journal of Computer Vision.

[31]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[32]  Bruce A. Draper,et al.  Visual object tracking using adaptive correlation filters , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[33]  Arnold W. M. Smeulders,et al.  UvA-DARE (Digital Academic Repository) Siamese Instance Search for Tracking , 2016 .

[34]  Shuicheng Yan,et al.  NUS-PRO: A New Visual Tracking Challenge , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Wei Wu,et al.  Distractor-aware Siamese Networks for Visual Object Tracking , 2018, ECCV.

[36]  Tianzhu Zhang,et al.  In Defense of Sparse Tracking: Circulant Sparse Tracker , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[38]  Luca Bertinetto,et al.  End-to-End Representation Learning for Correlation Filter Based Tracking , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[39]  Michael Felsberg,et al.  Discriminative Scale Space Tracking , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Ming-Hsuan Yang,et al.  Learning Spatial-Aware Regressions for Visual Tracking , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[41]  Michael Felsberg,et al.  Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking , 2016, ECCV.

[42]  Tieniu Tan,et al.  Feature Selection Based on Structured Sparsity: A Comprehensive Study , 2017, IEEE Transactions on Neural Networks and Learning Systems.

[43]  Zi Huang,et al.  Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence ℓ2,1-Norm Regularized Discriminative Feature Selection for Unsupervised Learning , 2022 .

[44]  Michael Felsberg,et al.  Accurate Scale Estimation for Robust Visual Tracking , 2014, BMVC.

[45]  Michael Felsberg,et al.  Learning Spatially Regularized Correlation Filters for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[46]  Yuan Dong,et al.  Correlation Filters with Weighted Convolution Responses , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[47]  Dit-Yan Yeung,et al.  Understanding and Diagnosing Visual Tracking Systems , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[48]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[49]  Yiannis Demiris,et al.  Attentional Correlation Filter Network for Adaptive Visual Tracking , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[50]  Gang Wang,et al.  Real-time part-based visual tracking via adaptive correlation filters , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[51]  Rynson W. H. Lau,et al.  CREST: Convolutional Residual Learning for Visual Tracking , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[52]  Haibin Ling,et al.  Robust visual tracking using ℓ1 minimization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[53]  Ming-Hsuan Yang,et al.  Long-term correlation tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[54]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[55]  Simon Lucey,et al.  Correlation filters with limited boundaries , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[56]  Narendra Ahuja,et al.  Robust Visual Tracking Via Consistent Low-Rank Sparse Learning , 2014, International Journal of Computer Vision.

[57]  Jianke Zhu,et al.  A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration , 2014, ECCV Workshops.

[58]  Mauro Barni,et al.  Improved wavelet-based watermarking through pixel-wise masking , 2001, IEEE Trans. Image Process..

[59]  Michael Felsberg,et al.  The Visual Object Tracking VOT2017 Challenge Results , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[60]  David Zhang,et al.  Fast Visual Tracking via Dense Spatio-temporal Context Learning , 2014, ECCV.

[61]  Ming-Hsuan Yang,et al.  Object Tracking Benchmark , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[62]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[63]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[64]  Ming Tang,et al.  Multi-kernel Correlation Filter for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[65]  Bernard Ghanem,et al.  Target Response Adaptation for Correlation Filter Tracking , 2016, ECCV.

[66]  Haibin Ling,et al.  Robust Visual Tracking using 1 Minimization , 2009 .

[67]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[68]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[69]  Michael Felsberg,et al.  ECO: Efficient Convolution Operators for Tracking , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[70]  Bernard Ghanem,et al.  A Benchmark and Simulator for UAV Tracking , 2016, ECCV.

[71]  Luca Bertinetto,et al.  Staple: Complementary Learners for Real-Time Tracking , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[72]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[73]  Rui Caseiro,et al.  Exploiting the Circulant Structure of Tracking-by-Detection with Kernels , 2012, ECCV.

[74]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[75]  Vibhav Vineet,et al.  Struck: Structured Output Tracking with Kernels , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[76]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[77]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[78]  Zhenyu He,et al.  The Visual Object Tracking VOT2016 Challenge Results , 2016, ECCV Workshops.

[79]  Zhe,et al.  The Visual Object Tracking VOT2015 Challenge Results , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[80]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[81]  A. Aydın Alatan,et al.  Good Features to Correlate for Visual Tracking , 2017, IEEE Transactions on Image Processing.

[82]  Feiping Nie,et al.  Efficient and Robust Feature Selection via Joint ℓ2, 1-Norms Minimization , 2010, NIPS.

[83]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[84]  Michael Felsberg,et al.  Adaptive Decontamination of the Training Set: A Unified Formulation for Discriminative Visual Tracking , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[85]  Changsheng Xu,et al.  Structural Correlation Filter for Robust Visual Tracking , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[86]  Andrea Vedaldi,et al.  MatConvNet: Convolutional Neural Networks for MATLAB , 2014, ACM Multimedia.