Automatic segmentation of unorganized noisy point clouds based on the Gaussian map

A nonparametric clustering algorithm, called cell mean shift (CMS), is developed to extract clusters of a set of points on the Gaussian sphere S^2. It is computationally more efficient than the traditional mean shift (MS). Based on the singular value decomposition, the dimensional analysis is introduced to classify these clusters into point-, curve-, and area-form clusters. Each cluster is the Gaussian image of a set of points which will be examined by a connected search in R^3. An orientation analysis of the Gaussian map to area-form clusters is applied to identify hyperbolic and elliptical regions. A signed point-to-plane distance function is used to identify points of convex and concave regions. Segmentation results of several real as well as synthetic point clouds, together with complexity analyses, are presented.

[1]  Berthold K. P. Horn Extended Gaussian images , 1984, Proceedings of the IEEE.

[2]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  F. Gyorgy,et al.  Rendering and managing spherical data with sphere quadtrees , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[4]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Kosuke Sato,et al.  Some further results of experimental comparison of range image segmentation algorithms , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[6]  Robert F. Sproull,et al.  Refinements to nearest-neighbor searching ink-dimensional trees , 1991, Algorithmica.

[7]  Ilan Shimshoni,et al.  Mean shift based clustering in high dimensions: a texture classification example , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[8]  Chia-Hsiang Menq,et al.  Automatic data segmentation for geometric feature extraction from unorganized 3-D coordinate points , 2001, IEEE Trans. Robotics Autom..

[9]  Hans-Peter Seidel,et al.  Feature sensitive mesh segmentation with mean shift , 2005, International Conference on Shape Modeling and Applications 2005 (SMI' 05).

[10]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[11]  Tamás Várady,et al.  Direct segmentation of smooth, multiple point regions , 2002, Geometric Modeling and Processing. Theory and Applications. GMP 2002. Proceedings.

[12]  Ramakant Nevatia,et al.  Segmented descriptions of 3-D surfaces , 1987, IEEE Journal on Robotics and Automation.

[13]  Horst Bunke,et al.  High-level feature based range image segmentation , 2000, Image Vis. Comput..

[14]  Peter Meer,et al.  Nonlinear Mean Shift for Clustering over Analytic Manifolds , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[15]  Paulo F. U. Gotardo,et al.  Range image segmentation into planar and quadric surfaces using an improved robust estimator and genetic algorithm , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[16]  Y. H. Chen,et al.  Quadric surface extraction using genetic algorithms , 1999, Comput. Aided Des..

[17]  Katsushi Ikeuchi,et al.  The Complex EGI: A New Representation for 3-D Pose Determination , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Manfredo P. do Carmo,et al.  Differential geometry of curves and surfaces , 1976 .

[19]  Kostas Daniilidis,et al.  Fully Automatic Registration of 3D Point Clouds , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[20]  Tony C. Woo,et al.  Visibility maps and spherical algorithms , 1994, Comput. Aided Des..

[21]  Irving Biederman,et al.  Human image understanding: Recent research and a theory , 1985, Comput. Vis. Graph. Image Process..

[22]  Changming Sun,et al.  3D Symmetry Detection Using The Extended Gaussian Image , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Larry D. Hostetler,et al.  The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.

[24]  Atilla Baskurt,et al.  A new CAD mesh segmentation method, based on curvature tensor analysis , 2005, Comput. Aided Des..

[25]  Prosenjit Gupta,et al.  Efficient geometric algorithms for workpiece orientation in 4- and 5-axis NC machining , 1996, Comput. Aided Des..

[26]  Semyung Wang,et al.  A new segmentation method for point cloud data , 2002 .

[27]  Ramesh C. Jain,et al.  Segmentation through Variable-Order Surface Fitting , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Andrew Y. C. Nee,et al.  Geometric Feature Detection for Reverse Engineering Using Range Imaging , 1996, J. Vis. Commun. Image Represent..

[29]  Bruce G. Batchelor,et al.  Edge-Region-Based Segmentation of Range Images , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Min Yang,et al.  Segmentation of measured point data using a parametric quadric surface approximation , 1999, Comput. Aided Des..

[31]  Chia-Hsiang Menq,et al.  Identification and Characterization of Regular Surfaces from Unorganized Points by Normal Sensitivity Analysis , 2002, J. Comput. Inf. Sci. Eng..

[32]  Michael Spann,et al.  MIR: An Approach to Robust Clustering-Application to Range Image Segmentation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Miguel Á. Carreira-Perpiñán Acceleration Strategies for Gaussian Mean-Shift Image Segmentation , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[34]  Andrew W. Fitzgibbon,et al.  An Experimental Comparison of Range Image Segmentation Algorithms , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Naokazu Yokoya,et al.  Range Image Segmentation Based on Differential Geometry: A Hybrid Approach , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Milan Sonka,et al.  Robust active appearance models and their application to medical image analysis , 2005, IEEE Transactions on Medical Imaging.

[37]  Rida T. Farouki,et al.  Gauss map computation for free-form surfaces , 2001, Comput. Aided Geom. Des..