Matrix Optimization Over Low-Rank Spectral Sets: Stationary Points and Local and Global Minimizers

[1]  N. Xiu,et al.  Optimality Conditions for Rank-Constrained Matrix Optimization , 2019, Journal of the Operations Research Society of China.

[2]  Naihua Xiu,et al.  A Fast Matrix Majorization-Projection Method for Penalized Stress Minimization With Box Constraints , 2018, IEEE Transactions on Signal Processing.

[3]  Naihua Xiu,et al.  A convergent iterative hard thresholding for nonnegative sparsity optimization , 2017 .

[4]  Naihua Xiu,et al.  Optimality conditions for sparse nonlinear programming , 2017 .

[5]  Matthew K. Tam Regularity properties of non-negative sparsity sets , 2016, 1607.05924.

[6]  Paul Van Dooren,et al.  A Riemannian rank-adaptive method for low-rank optimization , 2016, Neurocomputing.

[7]  Shaohua Pan,et al.  Error bounds for rank constrained optimization problems and applications , 2016, Oper. Res. Lett..

[8]  Justin K. Romberg,et al.  An Overview of Low-Rank Matrix Recovery From Incomplete Observations , 2016, IEEE Journal of Selected Topics in Signal Processing.

[9]  Zhaosong Lu,et al.  Optimization over Sparse Symmetric Sets via a Nonmonotone Projected Gradient Method , 2015, 1509.08581.

[10]  D. Drusvyatskiy,et al.  Variational analysis of spectral functions simplified , 2015, 1506.05170.

[11]  Robert L. Kosut,et al.  Quantum tomography protocols with positivity are compressed sensing protocols , 2015, npj Quantum Information.

[12]  Zhi-Quan Luo,et al.  Guaranteed Matrix Completion via Non-Convex Factorization , 2014, IEEE Transactions on Information Theory.

[13]  Stephen P. Boyd,et al.  Generalized Low Rank Models , 2014, Found. Trends Mach. Learn..

[14]  Reinhold Schneider,et al.  Convergence Results for Projected Line-Search Methods on Varieties of Low-Rank Matrices Via Łojasiewicz Inequality , 2014, SIAM J. Optim..

[15]  Moritz Hardt,et al.  Understanding Alternating Minimization for Matrix Completion , 2013, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[16]  Xuelong Li,et al.  Fast and Accurate Matrix Completion via Truncated Nuclear Norm Regularization , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Anthony Man-Cho So,et al.  Beyond convex relaxation: A polynomial-time non-convex optimization approach to network localization , 2013, 2013 Proceedings IEEE INFOCOM.

[18]  P. Absil,et al.  Iterative Methods for Low Rank Approximation of Graph Similarity Matrices , 2013, MLG 2009.

[19]  Prateek Jain,et al.  Low-rank matrix completion using alternating minimization , 2012, STOC '13.

[20]  Feiping Nie,et al.  Robust Matrix Completion via Joint Schatten p-Norm and lp-Norm Minimization , 2012, 2012 IEEE 12th International Conference on Data Mining.

[21]  Goran Marjanovic,et al.  On $l_q$ Optimization and Matrix Completion , 2012, IEEE Transactions on Signal Processing.

[22]  Yin Zhang,et al.  Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm , 2012, Mathematical Programming Computation.

[23]  Yonina C. Eldar,et al.  Sparsity Constrained Nonlinear Optimization: Optimality Conditions and Algorithms , 2012, SIAM J. Optim..

[24]  D. R. Luke,et al.  Prox-Regularity of Rank Constraint Sets and Implications for Algorithms , 2011, Journal of Mathematical Imaging and Vision.

[25]  I. Markovsky Low-Rank Approximation , 2011, Communications and Control Engineering.

[26]  Yun-Bin Zhao,et al.  Approximation Theory of Matrix Rank Minimization and Its Application to Quadratic Equations , 2010, 1010.0851.

[27]  Zhaosong Lu,et al.  Penalty decomposition methods for rank minimization , 2010, Optim. Methods Softw..

[28]  Nicholas J. Higham,et al.  Computing a Nearest Correlation Matrix with Factor Structure , 2010, SIAM J. Matrix Anal. Appl..

[29]  Francis R. Bach,et al.  Low-Rank Optimization on the Cone of Positive Semidefinite Matrices , 2008, SIAM J. Optim..

[30]  Emmanuel J. Candès,et al.  The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.

[31]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[32]  Franz Rendl,et al.  Semidefinite programming relaxations for graph coloring and maximal clique problems , 2007, Math. Program..

[33]  Young-Hyun Moon,et al.  Technical communique: Structurally constrained H2 and H∞ control: A rank-constrained LMI approach , 2006 .

[34]  Yinyu Ye,et al.  Semidefinite programming for ad hoc wireless sensor network localization , 2004, Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004.

[35]  Renato D. C. Monteiro,et al.  A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization , 2003, Math. Program..

[36]  N. Higham Computing the nearest correlation matrix—a problem from finance , 2002 .

[37]  A. S. Lewis,et al.  Group Invariance and Convex Matrix Analysis , 1996, SIAM J. Matrix Anal. Appl..

[38]  Nathan Linial,et al.  The geometry of graphs and some of its algorithmic applications , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[39]  Leon Hirsch,et al.  Fundamentals Of Convex Analysis , 2016 .

[40]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[41]  Graham C. Goodwin,et al.  A Rank-Constrained Optimization approach: Application to Factor Analysis , 2014 .

[42]  Anastasios Kyrillidis Rigorous optimization recipes for sparse and low rank inverse problems with applications in data sciences , 2014 .

[43]  Yongqiang Chen,et al.  Global solutions of non-Lipschitz S 2 – S p minimization over the positive semidefinite cone , 2014 .

[44]  Maryam Fazel,et al.  Iterative reweighted algorithms for matrix rank minimization , 2012, J. Mach. Learn. Res..

[45]  Ding Chao,et al.  AN INTRODUCTION TO A CLASS OF MATRIX OPTIMIZATION PROBLEMS , 2012 .