Complex Polytope Extremality Results for Families of Matrices

In this paper we consider finite families of complex $n\times n$-matrices. In particular, we focus on those families that satisfy the so-called finiteness conjecture, which was recently disproved in its more general formulation. We conjecture that the validity of the finiteness conjecture for a finite family of nondefective type is equivalent to the existence of an extremal norm in the class of complex polytope norms. However, we have not been able to prove this complex polytope extremality conjecture, but we are able to prove the small complex polytope extremality theorem under some more restrictive hypotheses on the underlying family of matrices. In addition, our theorem assures a certain finiteness property on the number of vertices of the unit ball of the extremal complex polytope norm, which could be very useful for the construction of suitable algorithms aimed at the actual computation of the spectral radius of the family.

[1]  Michael Böhm,et al.  On a prediction model for concrete carbonation based on moving interfaces : interface concentrated reactions , 2003 .

[2]  L. Elsner The generalized spectral-radius theorem: An analytic-geometric proof , 1995 .

[3]  P. Benner,et al.  Parallel algorithms for model reduction of discrete-time systems , 2003, Int. J. Syst. Sci..

[4]  J. Lagarias,et al.  The finiteness conjecture for the generalized spectral radius of a set of matrices , 1995 .

[5]  Ricardo H. Nochetto,et al.  A posteriori error control for the Allen–Cahn problem: circumventing Gronwall's inequality , 2004 .

[6]  G. Dziuk,et al.  Simulation of Industrial Crystal Growth by the Vertical Bridgman Method , 2003 .

[7]  Vladimir L. Kharitonov,et al.  Exponential estimates for time delay systems , 2004, Syst. Control. Lett..

[8]  Frank Stenger,et al.  A Unified Approach to the Approximate Solution of Pde , 2007 .

[9]  Ronny Ramlau,et al.  Nonlinear inverse unbalance reconstruction in rotor dynamics , 2005 .

[10]  M. Zennaro,et al.  On the limit products of a family of matrices , 2003 .

[11]  Peter Benner,et al.  A Hybrid Method for the Numerical Solution of Discrete-Time Algebraic Riccati Equations , 2001 .

[12]  Enrique S. Quintana-Ortí,et al.  Efficient numerical algorithms for balanced stochastic truncation , 2001 .

[13]  P. Maass,et al.  AN OUTLINE OF ADAPTIVE WAVELET GALERKIN METHODS FOR TIKHONOV REGULARIZATION OF INVERSE PARABOLIC PROBLEMS , 2003 .

[14]  Rolf Clackdoyle,et al.  Accurate attenuation correction in SPECT imaging using optimization of bilinear functions and assuming an unknown spatially-varying attenuation distribution , 2000 .

[15]  R. Ramlau MOROZOV'S DISCREPANCY PRINCIPLE FOR TIKHONOV-REGULARIZATION OF NONLINEAR OPERATORS , 2002 .

[16]  Enrique S. Quintana-Ortí,et al.  Solving algebraic Riccati equations on parallel computers using Newton's method with exact line search , 2000, Parallel Comput..

[17]  Eberhard Bänsch,et al.  Adaptivity in 3D image processing , 2001 .

[18]  J. Mairesse,et al.  Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture , 2001 .

[19]  John N. Tsitsiklis,et al.  The Lyapunov exponent and joint spectral radius of pairs of matrices are hard—when not impossible—to compute and to approximate , 1997, Math. Control. Signals Syst..

[20]  Enrique S. Quintana-Ortí,et al.  Partial stabilization of large-scale discrete-time linear control systems , 2001, Proceedings International Conference on Parallel Processing Workshops.

[21]  F. Wirth The generalized spectral radius and extremal norms , 2002 .

[22]  L. J. Hayes,et al.  Iterative Methods for Large Linear Systems , 1989 .

[23]  R Grotmaack,et al.  Stabilitätsanalyse eines Moving-Boundary-Modells der beschleunigten Karbonatisierung von Portlandzementen , 2003 .

[24]  Gerd Teschke,et al.  A new method to reconstruct radar reflectivities and Doppler information , 2022 .

[25]  Yang Wang,et al.  Bounded semigroups of matrices , 1992 .

[26]  Michael Böhm,et al.  A two-reaction-zones moving-interface model for predicting Ca(OH)_2-carbonation in concrete , 2003 .

[27]  G. Rota,et al.  A note on the joint spectral radius , 1960 .

[28]  Fabian R. Wirth,et al.  Robustness of Nonlinear Systems and Their Domains of Attraction , 2001 .

[29]  Mau-Hsiang Shih,et al.  Simultaneous Schur stability , 1999 .

[30]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[31]  Enrique S. Quintana-Ortí,et al.  Balanced Truncation Model Reduction of Large-Scale Dense Systems on Parallel Computers , 2000 .

[32]  Peter Benner,et al.  An Implicitly Restarted Symplectic Lanczos Method for the Symplectic Eigenvalue Problem , 2000, SIAM J. Matrix Anal. Appl..

[33]  Enrique S. Quintana-Ortí,et al.  Parallel Partial Stabilizing Algorithms for Large Linear Control Systems , 2000, The Journal of Supercomputing.

[34]  Fabian Wirth,et al.  On the calculation of time‐varying stability radii , 1998 .

[35]  Peter Benner,et al.  A NOTE ON THE NUMERICAL SOLUTION OF COMPLEX HAMILTONIAN AND SKEW-HAMILTONIAN EIGENVALUE PROBLEMS , 1999 .

[36]  S. Dahlke Besov Regularity for the Neumann Problem , 2003 .

[37]  Nicola Guglielmi,et al.  On the asymptotic properties of a family of matrices , 2001 .

[38]  Michael Wolff,et al.  Evaluation of various phase-transition models for 100Cr6 for application in commercial FEM programmes , 2004 .

[39]  Heike Faßbender,et al.  Hamilton and Jacobi come full circle: Jacobi algorithms for structured Hamiltonian eigenproblems , 2001 .

[40]  Peter Kunkel,et al.  Symmetric collocation methods for linear differential-algebraic boundary value problems , 2002, Numerische Mathematik.

[41]  Ingrid Daubechies,et al.  Wavelet-based image decomposition by variational functionals , 2004, SPIE Optics East.

[42]  Gerd Teschke,et al.  Wavelet based methods for improved wind profiler signal processing , 2001 .

[43]  G. Ziegler Lectures on Polytopes , 1994 .

[44]  Mau-Hsiang Shih,et al.  Asymptotic Stability and Generalized Gelfand Spectral Radius Formula , 1997 .

[45]  Eberhard Bänsch,et al.  Simulation of dendritic crystal growth with thermal convection , 2000 .

[46]  Gerd Teschke,et al.  Construction of Generalized Uncertainty Principles and Wavelets in Anisotropic Sobolev Spaces , 2005, Int. J. Wavelets Multiresolution Inf. Process..

[47]  F. Camilli,et al.  A regularization of Zubov’s equation for robust domains of attraction , 2001 .

[48]  Peter Benner,et al.  Perturbation Analysis for the Eigenvalue Problem of a Formal Product of Matrices , 2002 .

[49]  Fabian R. Wirth,et al.  On the rate of convergence of infinite horizon discounted optimal value functions , 2000 .

[50]  Eberhard Bänsch,et al.  Numerical simulation of a silicon floating zone with a free capillary surface , 1999 .

[51]  F. Wirth,et al.  A globalization procedure for locally stabilizing controllers , 2001 .

[52]  Enrique S. Quintana-Ortí,et al.  NUMERICAL SOLUTION OF DISCRETE STABLE LINEAR MATRIX EQUATIONS ON MULTICOMPUTERS , 2002, Parallel Algorithms Appl..

[53]  Volker Mehrmann,et al.  Symmetric collocation for unstructured nonlinear differential-algebraic equations of arbitrary index , 2004, Numerische Mathematik.

[54]  Fabian Wirth,et al.  A Linearization Principle for Robustness with Respect to Time-Varying Perturbations , 2002 .

[55]  Lothar Reichel,et al.  Discrete least squares approximation by trigonometric polynomials , 1991 .

[56]  Wolfgang Dahmen,et al.  Adaptive Wavelet Methods for Saddle Point Problems - Optimal Convergence Rates , 2002, SIAM J. Numer. Anal..

[57]  Peter Wust,et al.  Efficient Methods in Hyperthermia Treatment Planning , 2000 .

[58]  Eberhard Bänsch,et al.  Taylor-Couette system with asymmetric boundary conditions , 2000 .

[59]  Nicola Guglielmi,et al.  On the zero-stability of variable stepsize multistep methods: the spectral radius approach , 2001, Numerische Mathematik.

[60]  Gerd Teschke,et al.  Detection and classification of material attributes-a practical application of wavelet analysis , 2000, IEEE Trans. Signal Process..

[61]  Gabriele Steidl,et al.  Coorbit Spaces and Banach Frames on Homogeneous Spaces with Applications to Analyzing Functions on Spheres , 2004 .

[62]  P. Maass,et al.  Tikhonov regularization for electrical impedance tomography on unbounded domains , 2003 .

[63]  Rafael Mayo,et al.  Parallel Algorithms for LQ Optimal Control of Discrete-Time Periodic Linear Systems , 2002, J. Parallel Distributed Comput..