Inhibitory Stabilization of the Cortical Network Underlies Visual Surround Suppression

[1]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[2]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and Linear Algebra , 1974 .

[3]  T R Vidyasagar,et al.  Response of neurons in the cat's lateral geniculate nucleus to moving bars of different length , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  T. Wiesel,et al.  Patterns of synaptic input to layer 4 of cat striate cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  M. Colonnier,et al.  A laminar analysis of the number of round‐asymmetrical and flat‐symmetrical synapses on spines, dendritic trunks, and cell bodies in area 17 of the cat , 1985, The Journal of comparative neurology.

[6]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[7]  C. Gilbert,et al.  Generation of end-inhibition in the visual cortex via interlaminar connections , 1986, Nature.

[8]  D. Ferster Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  B. Connors,et al.  Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition. , 1989, Journal of neurophysiology.

[10]  A. B. Bonds,et al.  Classifying simple and complex cells on the basis of response modulation , 1991, Vision Research.

[11]  H. Jones,et al.  The length‐response properties of cells in the feline dorsal lateral geniculate nucleus. , 1991, The Journal of physiology.

[12]  T. Wiesel,et al.  Targets of horizontal connections in macaque primary visual cortex , 1991, The Journal of comparative neurology.

[13]  D. V. van Essen,et al.  Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. , 1992, Journal of neurophysiology.

[14]  A. Peters,et al.  Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. , 1993, Cerebral cortex.

[15]  C. Li,et al.  Extensive integration field beyond the classical receptive field of cat's striate cortical neurons--classification and tuning properties. , 1994, Vision research.

[16]  I. Ohzawa,et al.  Length and width tuning of neurons in the cat's primary visual cortex. , 1994, Journal of neurophysiology.

[17]  Bard Ermentrout,et al.  Reduction of Conductance-Based Models with Slow Synapses to Neural Nets , 1994, Neural Computation.

[18]  Michael N. Shadlen,et al.  Noise, neural codes and cortical organization , 1994, Current Opinion in Neurobiology.

[19]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[20]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  Terrence J. Sejnowski,et al.  RAPID STATE SWITCHING IN BALANCED CORTICAL NETWORK MODELS , 1995 .

[22]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[23]  Randall D. Beer,et al.  On the Dynamics of Small Continuous-Time Recurrent Neural Networks , 1995, Adapt. Behav..

[24]  D. Ferster,et al.  Orientation selectivity of thalamic input to simple cells of cat visual cortex , 1996, Nature.

[25]  Z. Gil,et al.  Adult thalamocortical transmission involves both NMDA and non-NMDA receptors. , 1996, Journal of neurophysiology.

[26]  Kenneth D. Miller,et al.  Physiological Gain Leads to High ISI Variability in a Simple Model of a Cortical Regular Spiking Cell , 1997, Neural Computation.

[27]  D. Sagi,et al.  Excitatory-inhibitory network in the visual cortex: psychophysical evidence. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[28]  J. B. Levitt,et al.  Contrast dependence of contextual effects in primate visual cortex , 1997, nature.

[29]  B. McNaughton,et al.  Paradoxical Effects of External Modulation of Inhibitory Interneurons , 1997, The Journal of Neuroscience.

[30]  D. Amit,et al.  Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. , 1997, Cerebral cortex.

[31]  C. Blakemore,et al.  Different mechanisms underlie three inhibitory phenomena in cat area 17 , 1998, Vision Research.

[32]  D. Ferster,et al.  Strength and Orientation Tuning of the Thalamic Input to Simple Cells Revealed by Electrically Evoked Cortical Suppression , 1998, Neuron.

[33]  Nicholas J. Priebe,et al.  Contrast-Invariant Orientation Tuning in Cat Visual Cortex: Thalamocortical Input Tuning and Correlation-Based Intracortical Connectivity , 1998, The Journal of Neuroscience.

[34]  Haim Sompolinsky,et al.  Chaotic Balanced State in a Model of Cortical Circuits , 1998, Neural Computation.

[35]  S. Nelson,et al.  Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. , 1998, Journal of neurophysiology.

[36]  E. Todorov,et al.  A local circuit approach to understanding integration of long-range inputs in primary visual cortex. , 1998, Cerebral cortex.

[37]  B. Ermentrout Neural networks as spatio-temporal pattern-forming systems , 1998 .

[38]  R. Shapley,et al.  Contrast's effect on spatial summation by macaque V1 neurons , 1999, Nature Neuroscience.

[39]  V. Bringuier,et al.  Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. , 1999, Science.

[40]  I. Ohzawa,et al.  Suppression outside the classical cortical receptive field , 2000, Visual Neuroscience.

[41]  D. Ferster,et al.  The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. , 2000, Science.

[42]  M. Carandini,et al.  Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. , 2000, Journal of neurophysiology.

[43]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[44]  M. Sur,et al.  Dynamic properties of recurrent inhibition in primary visual cortex: contrast and orientation dependence of contextual effects. , 2000, Journal of neurophysiology.

[45]  D. Ferster,et al.  Membrane Potential and Conductance Changes Underlying Length Tuning of Cells in Cat Primary Visual Cortex , 2001, The Journal of Neuroscience.

[46]  A. Sillito,et al.  Spatial organization and magnitude of orientation contrast interactions in primate V1. , 2002, Journal of neurophysiology.

[47]  D. Hansel,et al.  How Noise Contributes to Contrast Invariance of Orientation Tuning in Cat Visual Cortex , 2002, The Journal of Neuroscience.

[48]  Chao-Yi Li,et al.  Clustered Organization of Neurons with Similar Extra-Receptive Field Properties in the Primary Visual Cortex , 2002, Neuron.

[49]  BsnNr C. Srorn,et al.  CLASSIFYING SIMPLE AND COMPLEX CELLS ON THE BASIS OF RESPONSE MODULATION , 2002 .

[50]  J. B. Levitt,et al.  Circuits for Local and Global Signal Integration in Primary Visual Cortex , 2002, The Journal of Neuroscience.

[51]  K. Miller,et al.  Neural noise can explain expansive, power-law nonlinearities in neural response functions. , 2002, Journal of neurophysiology.

[52]  Yumiko Yoshimura,et al.  Suppressive effects of receptive field surround on neuronal activity in the cat primary visual cortex , 2002, Neuroscience Research.

[53]  Paul R. Martin,et al.  Extraclassical Receptive Field Properties of Parvocellular, Magnocellular, and Koniocellular Cells in the Primate Lateral Geniculate Nucleus , 2002, The Journal of Neuroscience.

[54]  J. Movshon,et al.  Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[55]  J. Movshon,et al.  Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[56]  G. Tamás,et al.  Identified Sources and Targets of Slow Inhibition in the Neocortex , 2003, Science.

[57]  J. Movshon,et al.  Time Course and Time-Distance Relationships for Surround Suppression in Macaque V1 Neurons , 2003, The Journal of Neuroscience.

[58]  J. Lübke,et al.  Morphometric analysis of the columnar innervation domain of neurons connecting layer 4 and layer 2/3 of juvenile rat barrel cortex. , 2003, Cerebral cortex.

[59]  D. Simons,et al.  Cortical damping: analysis of thalamocortical response transformations in rodent barrel cortex. , 2003, Cerebral cortex.

[60]  Oren Shriki,et al.  Rate Models for Conductance-Based Cortical Neuronal Networks , 2003, Neural Computation.

[61]  T. Shou,et al.  Orientation bias of the extraclassical receptive field of the relay cells in the cat's dorsal lateral geniculate nucleus , 2004, Neuroscience.

[62]  Joshua C. Brumberg,et al.  A quantitative population model of whisker barrels: Re-examining the Wilson-Cowan equations , 1996, Journal of Computational Neuroscience.

[63]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[64]  Li I. Zhang,et al.  Tone-evoked excitatory and inhibitory synaptic conductances of primary auditory cortex neurons. , 2004, Journal of neurophysiology.

[65]  H. Ozeki,et al.  Relationship between Excitation and Inhibition Underlying Size Tuning and Contextual Response Modulation in the Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[66]  Nicholas J. Priebe,et al.  The contribution of spike threshold to the dichotomy of cortical simple and complex cells , 2004, Nature Neuroscience.

[67]  Peter E. Latham,et al.  Computing and Stability in Cortical Networks , 2004, Neural Computation.

[68]  P. Lennie,et al.  Early and Late Mechanisms of Surround Suppression in Striate Cortex of Macaque , 2005, The Journal of Neuroscience.

[69]  D. Contreras,et al.  Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex , 2005, Nature Neuroscience.

[70]  Matteo Carandini,et al.  Somatosensory Integration Controlled by Dynamic Thalamocortical Feed-Forward Inhibition , 2005, Neuron.

[71]  M. Carandini,et al.  The Suppressive Field of Neurons in Lateral Geniculate Nucleus , 2005, The Journal of Neuroscience.

[72]  Nicholas J. Priebe,et al.  Short-Term Depression in Thalamocortical Synapses of Cat Primary Visual Cortex , 2005, The Journal of Neuroscience.

[73]  John Rinzel,et al.  Estimation of synaptic conductances , 2006, Journal of Physiology-Paris.

[74]  B. Sakmann,et al.  Cortex Is Driven by Weak but Synchronously Active Thalamocortical Synapses , 2006, Science.

[75]  R. Freeman,et al.  Origins of cross-orientation suppression in the visual cortex. , 2006, Journal of neurophysiology.

[76]  Randall D. Beer,et al.  Parameter Space Structure of Continuous-Time Recurrent Neural Networks , 2006, Neural Computation.

[77]  K. Obermayer,et al.  The Role of Feedback in Shaping the Extra-Classical Receptive Field of Cortical Neurons: A Recurrent Network Model , 2006, The Journal of Neuroscience.

[78]  J. Movshon,et al.  Dynamics of Suppression in Macaque Primary Visual Cortex , 2006, The Journal of Neuroscience.

[79]  M. DeWeese,et al.  Non-Gaussian Membrane Potential Dynamics Imply Sparse, Synchronous Activity in Auditory Cortex , 2006, The Journal of Neuroscience.

[80]  Alex M Thomson,et al.  Layer 6 cortico-thalamic pyramidal cells preferentially innervate interneurons and generate facilitating EPSPs. , 2006, Cerebral cortex.

[81]  D. Contreras,et al.  Balanced Excitation and Inhibition Determine Spike Timing during Frequency Adaptation , 2006, The Journal of Neuroscience.

[82]  Nicholas J. Priebe,et al.  Mechanisms underlying cross-orientation suppression in cat visual cortex , 2006, Nature Neuroscience.

[83]  Alexander Lerchner,et al.  Mean field theory for a balanced hypercolumn model of orientation selectivity in primary visual cortex , 2004, Network.

[84]  D. McCormick,et al.  Neocortical Network Activity In Vivo Is Generated through a Dynamic Balance of Excitation and Inhibition , 2006, The Journal of Neuroscience.

[85]  F. Helmchen,et al.  Background Synaptic Activity Is Sparse in Neocortex , 2006, The Journal of Neuroscience.

[86]  M. Carandini,et al.  Temporal properties of surround suppression in cat primary visual cortex , 2007, Visual Neuroscience.

[87]  Kenneth D Miller,et al.  Effects of inhibitory gain and conductance fluctuations in a simple model for contrast-invariant orientation tuning in cat V1. , 2007, Journal of neurophysiology.

[88]  Nicholas J. Priebe,et al.  The Emergence of Contrast-Invariant Orientation Tuning in Simple Cells of Cat Visual Cortex , 2007, Neuron.

[89]  H. Sato,et al.  Orientation tuning of surround suppression in lateral geniculate nucleus and primary visual cortex of cat , 2007, Neuroscience.

[90]  Alex S. Ferecskó,et al.  Local Potential Connectivity in Cat Primary Visual Cortex , 2008 .

[91]  Valentin Dragoi,et al.  Asymmetric synaptic depression in cortical networks. , 2008, Cerebral cortex.

[92]  Nicholas J. Priebe,et al.  Inhibition, Spike Threshold, and Stimulus Selectivity in Primary Visual Cortex , 2008, Neuron.

[93]  D. McCormick,et al.  Cortical Action Potential Backpropagation Explains Spike Threshold Variability and Rapid-Onset Kinetics , 2008, The Journal of Neuroscience.

[94]  Chaoyi Li,et al.  Contrast-dependent and contrast-independent spatial summation of primary visual cortical neurons of the cat. , 2008, Cerebral cortex.

[95]  Valentin Dragoi,et al.  Asymmetric Synaptic Depression in , 2008 .

[96]  P. C. Murphy,et al.  Spatial summation in lateral geniculate nucleus and visual cortex , 2000, Experimental Brain Research.