Ensemble-based prediction of SAT search behaviour

Abstract Abstract Before attempting to solve an instance of the satisfiability problem, what can we ascertain about the instance at hand and how can we put that information to use when selecting and tuning a SAT algorithm to solve the instance? We argue for an ensemble-based approach and describe an illustrative example of how such a methodology can be applied to determine optimal restart cutoff points for systematic, backtracking search procedures for SAT. We discuss the methodology and indicate how it can be applied to evaluate such strategies as restarts, algorithm comparison, randomization and portfolios of algorithms.

[1]  David Zuckerman,et al.  Optimal speedup of Las Vegas algorithms , 1993, [1993] The 2nd Israel Symposium on Theory and Computing Systems.

[2]  Bart Selman,et al.  Boosting Combinatorial Search Through Randomization , 1998, AAAI/IAAI.

[3]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[4]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[5]  Bart Selman,et al.  Algorithm Portfolio Design: Theory vs. Practice , 1997, UAI.

[6]  Tad Hogg,et al.  Which Search Problems Are Random? , 1998, AAAI/IAAI.

[7]  Roberto J. Bayardo,et al.  Using CSP Look-Back Techniques to Solve Real-World SAT Instances , 1997, AAAI/IAAI.

[8]  Toby Walsh,et al.  Search in a Small World , 1999, IJCAI.

[9]  James M. Crawford,et al.  Experimental Results on the Application of Satisfiability Algorithms to Scheduling Problems , 1994, AAAI.

[10]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.

[11]  Dan R. Vlasie The Very Particular Structure of the Very Hard Instances , 1996, AAAI/IAAI, Vol. 1.

[12]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[13]  Tad Hogg,et al.  An Economics Approach to Hard Computational Problems , 1997, Science.

[14]  Holger H. Hoos,et al.  Stochastic local search - methods, models, applications , 1998, DISKI.

[15]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[16]  Bart Selman,et al.  Unifying SAT-based and Graph-based Planning , 1999, IJCAI.

[17]  Toby Walsh,et al.  Easy Problems are Sometimes Hard , 1994, Artif. Intell..

[18]  Tad Hogg,et al.  Expected Gains from Parallelizing Constraint Solving for Hard Problems , 1994, AAAI.

[19]  Bart Selman,et al.  Randomization in Backtrack Search: Exploiting Heavy-Tailed Profiles for Solving Hard Scheduling Problems , 1998, AIPS.

[20]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[21]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[22]  Hector J. Levesque,et al.  Generating Hard Satisfiability Problems , 1996, Artif. Intell..

[23]  Wolfgang Ertel,et al.  Optimal parallelization of Las Vegas algorithms , 1993, Forschungsberichte, TU Munich.

[24]  Bart Selman,et al.  On the fine structure of large search spaces , 1999, Proceedings 11th International Conference on Tools with Artificial Intelligence.