The Abinit project: Impact, environment and recent developments

Abstract Abinit  is a material- and nanostructure-oriented package that implements density-functional theory (DFT) and many-body perturbation theory (MBPT) to find, from first principles, numerous properties including total energy, electronic structure, vibrational and thermodynamic properties, different dielectric and non-linear optical properties, and related spectra. In the special issue to celebrate the 40th anniversary of CPC, published in 2009, a detailed account of Abinit  was included [Gonze et al. (2009)], and has been amply cited. The present article comes as a follow-up to this 2009 publication. It includes an analysis of the impact that Abinit  has had, through for example the bibliometric indicators of the 2009 publication. Links with several other computational materials science projects are described. This article also covers the new capabilities of Abinit  that have been implemented during the last three years, complementing a recent update of the 2009 article published in 2016. Physical and technical developments inside the abinit  application are covered, as well as developments provided with the Abinit  package, such as the multibinit  and a-tdep  projects, and related Abinit  organization developments such as AbiPy  . The new developments are described with relevant references, input variables, tests, and tutorials. Program summary Program Title: Abinit  Program Files doi: http://dx.doi.org/10.17632/csvdrr4d68.1 Licensing provisions: GPLv3 Programming language: Fortran2003, Python Journal reference of previous version: X .Gonze et al, Comput. Phys. Commun. 205 (2016) 106–131 Does the new version supersede the previous version?: Yes. The present 8.10.3 version is now the up-to-date stable version of abinit  , and supercedes the 7.10.5 version. Reasons for the new version: New developments Summary of revisions: • Many new capabilities of the main abinit  application, related to density-functional theory, density-functional perturbation theory, GW, the Bethe-Salpeter equation, dynamical mean-field theory, etc. • New applications in the package: multibinit  (second-principles calculations)and tdep  (temperature-dependent properties) Nature of problem: Computing accurately material and nanostructure properties: electronic structure, bond lengths, bond angles, primitive cell, cohesive energy, dielectric properties, vibrational properties, elastic properties, optical properties, magnetic properties, non-linear couplings, electronic and vibrational lifetimes, etc. For large-scale systems, second-principles calculations, building upon the first-principles results, are also possible. Solution method: Software application based on density-functional theory and many-body perturbation theory, pseudopotentials, with plane waves or wavelets as basis functions. Different real-time algorithms are implemented for second-principles calculations.

[1]  Yannick Gillet,et al.  Precise effective masses from density functional perturbation theory , 2016 .

[2]  Rabe,et al.  First-principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO3. , 1995, Physical review. B, Condensed matter.

[3]  John Banhart,et al.  Relativistic and non-relativistic electron transport in disordered alloys I. Theory , 1998 .

[4]  N. A. W. Holzwartha,et al.  A Projector Augmented Wave ( PAW ) code for electronic structure calculations , Part I : atompaw for generating atom-centered functions , 2001 .

[5]  Jacek C. Wojdel,et al.  Efficient systematic scheme to construct second-principles lattice dynamical models , 2017 .

[6]  Mark Asta,et al.  A database to enable discovery and design of piezoelectric materials , 2015, Scientific Data.

[7]  Hartmut Hafermann,et al.  Orthogonal polynomial representation of imaginary-time Green’s functions , 2011, 1104.3215.

[8]  Andrew J. Millis,et al.  Spin-density functional theories and their +U and +J extensions: A comparative study of transition metals and transition metal oxides , 2016 .

[9]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[10]  Philipp Werner,et al.  Hybridization expansion impurity solver: General formulation and application to Kondo lattice and two-orbital models , 2006 .

[11]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[12]  Kristin A. Persson,et al.  Surface energies of elemental crystals , 2016, Scientific Data.

[13]  D. Koelling,et al.  On the interpolation of eigenvalues and a resultant integration scheme , 1986 .

[14]  Xavier Gonze,et al.  Implementation of the projector augmented-wave method in the ABINIT code: Application to the study of iron under pressure , 2008 .

[15]  M J Donahue,et al.  OOMMF User's Guide, Version 1.0 , 1999 .

[16]  U. V. Barth,et al.  Local-density theory of multiplet structure , 1979 .

[17]  Andrea Marini,et al.  yambo: An ab initio tool for excited state calculations , 2008, Comput. Phys. Commun..

[18]  Igor A. Abrikosov,et al.  Temperature-dependent effective third-order interatomic force constants from first principles , 2013, 1308.5436.

[19]  Alexis Gerossier,et al.  Comparative analysis of models for the α − γ phase transition in cerium: A DFT+DMFT study using Wannier orbitals , 2015 .

[20]  Alberto García,et al.  The psml format and library for norm-conserving pseudopotential data curation and interoperability , 2017, Comput. Phys. Commun..

[21]  David A. Strubbe,et al.  BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures , 2011, Comput. Phys. Commun..

[22]  Andrew J. Millis,et al.  Density functional versus spin-density functional and the choice of correlated subspace in multi-variable effective action theories of electronic structure , 2015 .

[23]  Xavier Gonze,et al.  Sharing electronic structure and crystallographic data with ETSF_IO , 2008, Comput. Phys. Commun..

[24]  Micael J. T. Oliveira,et al.  Recent developments in libxc - A comprehensive library of functionals for density functional theory , 2018, SoftwareX.

[25]  Philippe Ghosez,et al.  First-principles model potentials for lattice-dynamical studies: general methodology and example of application to ferroic perovskite oxides , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[26]  Fernando D. Vila,et al.  Theoretical X-Ray Absorption Debye-Waller Factors , 2007, cond-mat/0702397.

[27]  Terumasa Tadano,et al.  Empirical interatomic potentials optimized for phonon properties , 2017, npj Computational Materials.

[28]  Yuto Komeiji Implementation of the blue moon ensemble method , 2007 .

[29]  Matthias Krack,et al.  Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals , 2005 .

[30]  Srivastava,et al.  Electronic structure , 2001, Physics Subject Headings (PhySH).

[31]  Fritz B. Prinz,et al.  Benchmarking density functional perturbation theory to enable high-throughput screening of materials for dielectric constant and refractive index , 2016 .

[32]  Matthieu Verstraete,et al.  Density functional perturbation theory with spin-orbit coupling: Phonon band structure of lead , 2008 .

[33]  S. Goedecker,et al.  A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments. , 2015, The Journal of chemical physics.

[34]  G. E. Matthews,et al.  A Projector Augmented Wave (PAW) code for electronic structure calculations, Part I: atompaw for generating atom-centered functions , 2001 .

[35]  Gian-Marco Rignanese,et al.  Convergence and pitfalls of density functional perturbation theory phonons calculations from a high-throughput perspective , 2017, 1710.06028.

[36]  Pekka Koskinen,et al.  Structural relaxation made simple. , 2006, Physical review letters.

[37]  V. Van Speybroeck,et al.  Error Estimates for Solid-State Density-Functional Theory Predictions: An Overview by Means of the Ground-State Elemental Crystals , 2012, 1204.2733.

[38]  J. Bouchet,et al.  a-TDEP Temperature Dependent Effective Potential for Abinit – Part I : Thermodynamic properties using second and third order Interatomic Force Constants , 2019 .

[39]  Joel E. Moore,et al.  Orbital magnetoelectric coupling in band insulators , 2010, 1002.0290.

[40]  S. Duane,et al.  Hybrid Monte Carlo , 1987 .

[41]  M. J. van Setten,et al.  The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table , 2017, Comput. Phys. Commun..

[42]  C. Marianetti,et al.  Electronic structure calculations with dynamical mean-field theory , 2005, cond-mat/0511085.

[43]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[44]  J. Rehr,et al.  Parameter-free calculations of X-ray spectra with FEFF9. , 2010, Physical chemistry chemical physics : PCCP.

[45]  Michele Parrinello,et al.  Generalized neural-network representation of high-dimensional potential-energy surfaces. , 2007, Physical review letters.

[46]  S. Goedecker,et al.  Relativistic separable dual-space Gaussian pseudopotentials from H to Rn , 1998, cond-mat/9803286.

[47]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[48]  Stefan Albrecht Lucia Reining Rodolfo Del Sole Giovanni Onida Ab Initio Calculation of Excitonic Effects in the Optical Spectra of Semiconductors , 1998 .

[49]  Wei Chen,et al.  An ab initio electronic transport database for inorganic materials , 2017, Scientific Data.

[50]  Lara K. Teles,et al.  Approximation to density functional theory for the calculation of band gaps of semiconductors , 2008, 0808.0729.

[51]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .

[52]  E K U Gross,et al.  Transverse spin-gradient functional for noncollinear spin-density-functional theory. , 2012, Physical review letters.

[53]  S. Y. Savrasov Linear Response Calculations of Spin Fluctuations , 1998 .

[54]  Bernard Amadon,et al.  First-principles DFT+DMFT calculations of structural properties of actinides: Role of Hund's exchange, spin-orbit coupling, and crystal structure , 2016 .

[55]  G. Vignale,et al.  Transverse and longitudinal gradients of the spin magnetization in spin-density-functional theory , 2013, 1309.4905.

[56]  Matthias Troyer,et al.  Continuous-time solver for quantum impurity models. , 2005, Physical review letters.

[57]  W. Ludwig,et al.  Theory of Anharmonic Effects in Crystals , 1961 .

[58]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[59]  Harold T. Stokes,et al.  Method to extract anharmonic force constants from first principles calculations , 2008 .

[60]  S. K. Kurtz,et al.  A powder technique for the evaluation of nonlinear optical materials , 1968 .

[61]  Chi Chen,et al.  High-throughput computational X-ray absorption spectroscopy , 2018, Scientific Data.

[62]  Feliciano Giustino,et al.  Electron-phonon interactions from first principles , 2016, 1603.06965.

[63]  J. Paier,et al.  Screened hybrid density functionals applied to solids. , 2006, The Journal of chemical physics.

[64]  Matthew Horton,et al.  Atomate: A high-level interface to generate, execute, and analyze computational materials science workflows , 2017 .

[65]  Sven P. Rudin,et al.  Tight-binding calculations of the elastic constants and phonons of hcp Zr: Complications due to anisotropic stress and long-range forces , 2006 .

[66]  Takeshi Yanai,et al.  Projector Augmented Wave Method Incorporated into Gauss-Type Atomic Orbital Based Density Functional Theory. , 2017, Journal of chemical theory and computation.

[67]  Javier Junquera,et al.  Second-principles method for materials simulations including electron and lattice degrees of freedom , 2015, 1511.07675.

[68]  Manuel Cardona,et al.  Light Scattering in Solids VII , 2000 .

[69]  Xavier Gonze,et al.  Vibrational and dielectric properties of the bulk transition metal dichalcogenides , 2018, Physical Review Materials.

[70]  E. Kioupakis,et al.  Predicting and Designing Optical Properties of Inorganic Materials , 2015 .

[71]  Gian-Marco Rignanese,et al.  First-principles study of paraelectric and ferroelectric CsH2PO4 including dispersion forces: Stability and related vibrational, dielectric, and elastic properties , 2017, 1801.08756.

[72]  E. Hairer,et al.  Geometric numerical integration illustrated by the Störmer–Verlet method , 2003, Acta Numerica.

[73]  Testa,et al.  Green's-function approach to linear response in solids. , 1987, Physical review letters.

[74]  Ching Hua Lee,et al.  Anharmonic interatomic force constants and thermal conductivity from Grüneisen parameters: An application to graphene , 2017 .

[75]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[76]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[77]  Feliciano Giustino,et al.  Fröhlich Electron-Phonon Vertex from First Principles. , 2015, Physical review letters.

[78]  D. Vanderbilt,et al.  Pseudopotentials for high-throughput DFT calculations , 2013, 1305.5973.

[79]  Miguel A. L. Marques,et al.  Libxc: A library of exchange and correlation functionals for density functional theory , 2012, Comput. Phys. Commun..

[80]  Kun Cao,et al.  Ab initio calculation of spin fluctuation spectra using time-dependent density functional perturbation theory, plane waves, and pseudopotentials , 2017, 1707.05219.

[81]  X. Gonze,et al.  Nonlinear optical susceptibilities, Raman efficiencies, and electro-optic tensors from first-principles density functional perturbation theory , 2004 .

[82]  Andrea Grisafi,et al.  Symmetry-Adapted Machine Learning for Tensorial Properties of Atomistic Systems. , 2017, Physical review letters.

[83]  W. Krauth,et al.  Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions , 1996 .

[84]  D. Wallace,et al.  Statistical Physics of Crystals and Liquids: A Guide to Highly Accurate Equations of State , 2003 .

[85]  Bronis R. de Supinski,et al.  The Spack package manager: bringing order to HPC software chaos , 2015, SC15: International Conference for High Performance Computing, Networking, Storage and Analysis.

[86]  Marc Torrent,et al.  Generation of Projector Augmented-Wave atomic data: A 71 element validated table in the XML format , 2013, Comput. Phys. Commun..

[87]  François Bottin,et al.  Phonon spectra of plutonium at high temperatures , 2017 .

[88]  Gian-Marco Rignanese,et al.  High-throughput density-functional perturbation theory phonons for inorganic materials , 2018, Scientific data.

[89]  Lee,et al.  Ab initio calculation of the thermodynamic properties and atomic temperature factors of SiO2 alpha -quartz and stishovite. , 1995, Physical review. B, Condensed matter.

[90]  Giovanni Scalmani,et al.  Noncollinear density functional theory having proper invariance and local torque properties , 2013 .

[91]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[92]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[93]  Markus Geimer,et al.  Modern Scientific Software Management Using EasyBuild and Lmod , 2014, 2014 First International Workshop on HPC User Support Tools.

[94]  X. Gonze,et al.  Density-operator theory of orbital magnetic susceptibility in periodic insulators , 2011, 1108.1732.

[95]  P. Carrier,et al.  General treatment of the singularities in Hartree-Fock and exact-exchange Kohn-Sham methods for solids , 2006, cond-mat/0603632.

[96]  Junichiro Shiomi,et al.  Thermal conductivity of half-Heusler compounds from first-principles calculations , 2011 .

[97]  William A. Curtin,et al.  Screw dislocation structure and mobility in body centered cubic Fe predicted by a Gaussian Approximation Potential , 2018, npj Computational Materials.

[98]  Kazutoshi Miwa,et al.  Prediction of Raman spectra with ultrasoft pseudopotentials , 2011 .

[99]  L. Bellaiche,et al.  Large scale hybrid Monte Carlo simulations for structure and property prediction , 2018, npj Computational Materials.

[100]  J. Bouchet,et al.  Thermal evolution of vibrational properties ofα-U , 2015 .

[101]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[102]  S. Poncé,et al.  Temperature dependence of the electronic structure of semiconductors and insulators. , 2015, The Journal of chemical physics.

[103]  Godby,et al.  Density-Polarization Functional Theory of the Response of a Periodic Insulating Solid to an Electric Field. , 1995, Physical review letters.

[104]  S. Louie,et al.  Electron-phonon interaction using Wannier functions , 2007 .

[105]  Christoph Cobet,et al.  Transition energies and direct-indirect band gap crossing in zinc-blende AlxGa1−xN , 2013 .

[106]  Gian-Marco Rignanese,et al.  An Unlikely Route to Low Lattice Thermal Conductivity: Small Atoms in a Simple Layered Structure , 2018, Joule.

[107]  Xavier Gonze,et al.  A brief introduction to the ABINIT software package , 2005 .

[108]  Bernard Amadon,et al.  A unified and efficient theory for the structural properties of actinides and phases of plutonium , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[109]  Alfredo Pasquarello,et al.  Ab initio Electronic Structure of Liquid Water. , 2016, Physical review letters.

[110]  Georg Kresse,et al.  Self-consistent meta-generalized gradient approximation within the projector-augmented-wave method , 2011 .

[111]  Elham Mozafari,et al.  Finite-temperature elastic constants of paramagnetic materials within the disordered local moment picture from ab initio molecular dynamics calculations , 2016, 1604.08855.

[112]  M Marsili,et al.  Many-body perturbation theory calculations using the yambo code , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[113]  Xavier Gonze,et al.  Interatomic force constants including the DFT-D dispersion contribution , 2016, 1801.08741.

[114]  A Marek,et al.  The ELPA library: scalable parallel eigenvalue solutions for electronic structure theory and computational science , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[115]  Xavier Gonze,et al.  Theoretical approaches to the temperature and zero‐point motion effects on the electronic band structure , 2011 .

[116]  Gian-Marco Rignanese,et al.  First-principle studies of the lattice dynamics of crystals, and related properties , 2005 .

[117]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[118]  Stefan Goedecker,et al.  ABINIT: First-principles approach to material and nanosystem properties , 2009, Comput. Phys. Commun..

[119]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[120]  Cormac Toher,et al.  Charting the complete elastic properties of inorganic crystalline compounds , 2015, Scientific Data.

[121]  Yannick Gillet,et al.  First-principles study of excitonic effects in Raman intensities , 2013, 1309.1850.

[122]  Mark E. Tuckerman,et al.  Algorithms and novel applications based on the isokinetic ensemble. I. Biophysical and path integral molecular dynamics , 2003 .

[123]  J. Bouchet,et al.  High-temperature and high-pressure phase transitions in uranium , 2017 .

[124]  Eric Bousquet,et al.  Density functional perturbation theory within noncollinear magnetism , 2019, Physical Review B.

[125]  M. Troyer,et al.  Continuous-time Monte Carlo methods for quantum impurity models , 2010, 1012.4474.

[126]  Lucia Reining,et al.  Quasiparticles and phonon satellites in spectral functions of semiconductors and insulators: Cumulants applied to full first principles theory and Fr\"ohlich polaron , 2017, 1710.07594.

[127]  张嵬 莫梅琦,et al.  ISI Web of Knowledge体系检索特色与应用评析 , 2003 .

[128]  Masayoshi Mikami,et al.  Beyond the one-dimensional configuration coordinate model of photoluminescence , 2019, Physical Review B.

[129]  G. Kresse,et al.  Relaxed core projector-augmented-wave method. , 2006, The Journal of chemical physics.

[130]  Rabe,et al.  Localized basis for effective lattice Hamiltonians: Lattice Wannier functions. , 1995, Physical review. B, Condensed matter.

[131]  Arash A. Mostofi,et al.  A converse approach to the calculation of NMR shielding tensors , 2007, 0709.4429.

[132]  P. Rennert,et al.  Many‐particle Physics , 1982 .

[133]  Xavier Gonze,et al.  First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm , 1997 .

[134]  G. Madsen,et al.  BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients , 2017, Comput. Phys. Commun..

[135]  Michiel Sprik,et al.  Free energy from constrained molecular dynamics , 1998 .

[136]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[137]  F. Jollet,et al.  Calculations of the transport properties within the PAW formalism , 2010 .

[138]  Gonze,et al.  Ab initio study of the volume dependence of dynamical and thermodynamical properties of silicon. , 1996, Physical review. B, Condensed matter.

[139]  D. G. Shankland Fourier transformation by smooth interpolation , 2009 .

[140]  O. Eriksson,et al.  A method for atomistic spin dynamics simulations: implementation and examples , 2008, 0806.1582.

[141]  X. Gonze,et al.  Density-functional approach to nonlinear-response coefficients of solids. , 1989, Physical review. B, Condensed matter.

[142]  D. Hamann Optimized norm-conserving Vanderbilt pseudopotentials , 2013, 1306.4707.

[143]  Yannick Gillet,et al.  Efficient on-the-fly interpolation technique for Bethe-Salpeter calculations of optical spectra , 2016, Comput. Phys. Commun..

[144]  Yannick Gillet,et al.  Temperature dependence of electronic eigenenergies in the adiabatic harmonic approximation , 2014, 1408.2752.

[145]  Xavier Gonze,et al.  Dynamical and anharmonic effects on the electron-phonon coupling and the zero-point renormalization of the electronic structure , 2015, 1505.07738.

[146]  Robert T. Downs,et al.  The power of databases: The RRUFF project , 2016 .

[147]  David J. Singh,et al.  BoltzTraP. A code for calculating band-structure dependent quantities , 2006, Comput. Phys. Commun..

[148]  X. Gonze,et al.  Dynamical atomic charges: The case of ABO(3) compounds , 1998 .

[149]  Andrea Marini,et al.  Ab initio finite-temperature excitons. , 2007, Physical review letters.

[150]  Lin Lin,et al.  Adaptively Compressed Exchange Operator. , 2016, Journal of chemical theory and computation.

[152]  M. O. A. Ellis,et al.  Atomistic spin model simulations of magnetic nanomaterials , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[153]  T. C. Collins,et al.  Crystalline Interpolation with Applications to Brillouin-Zone Averages and Energy-Band Interpolation , 1969 .

[154]  P. Pulay Improved SCF convergence acceleration , 1982 .

[155]  Yaochun Shen,et al.  Nonlinear Optical Susceptibilities , 2001 .

[156]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[157]  Baldereschi,et al.  Self-consistent Hartree-Fock and screened-exchange calculations in solids: Application to silicon. , 1986, Physical review. B, Condensed matter.

[158]  R. Kondor,et al.  Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. , 2009, Physical review letters.

[159]  John P. Perdew,et al.  Jacob’s ladder of density functional approximations for the exchange-correlation energy , 2001 .

[160]  Lucia Reining,et al.  Efficient ab initio calculations of bound and continuum excitons in the absorption spectra of semico , 2007, 0705.3140.

[161]  Stefano de Gironcoli,et al.  Reproducibility in density functional theory calculations of solids , 2016, Science.

[162]  Lucia Reining,et al.  Estimating excitonic effects in the absorption spectra of solids: problems and insight from a guided iteration scheme. , 2014, Physical review letters.

[163]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[164]  Giovanni Onida,et al.  Exchange and correlation effects beyond the LDA on the dielectric function of silicon , 1999 .

[165]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[166]  A. Benuzzi-Mounaix,et al.  Ab initio calculations of the B1-B2 phase transition in MgO , 2019, Physical Review B.

[167]  E K U Gross,et al.  Bootstrap approximation for the exchange-correlation kernel of time-dependent density-functional theory. , 2011, Physical review letters.

[168]  Franccois Bottin,et al.  Large scale ab initio calculations based on three levels of parallelization , 2007, 0707.3405.

[169]  Gabor Csanyi,et al.  Achieving DFT accuracy with a machine-learning interatomic potential: thermomechanics and defects in bcc ferromagnetic iron , 2017, 1706.10229.

[170]  John S. Tse,et al.  Calculations of transport properties with the linearized augmented plane-wave method , 2000 .

[171]  Yannick Gillet Ab initio study of Raman and optical spectra of crystalline materials and their temperature dependence , 2017 .

[172]  T. Gilbert A phenomenological theory of damping in ferromagnetic materials , 2004, IEEE Transactions on Magnetics.

[173]  M. Scheffler,et al.  Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory , 1998, cond-mat/9807418.

[174]  Olivier Parcollet,et al.  TRIQS/CTHYB: A continuous-time quantum Monte Carlo hybridisation expansion solver for quantum impurity problems , 2015, Comput. Phys. Commun..

[175]  Eric L. Shirley,et al.  Efficient implementation of core-excitation Bethe-Salpeter equation calculations , 2015, Comput. Phys. Commun..

[176]  A. Alavi,et al.  Efficient calculation of the exact exchange energy in periodic systems using a truncated Coulomb potential , 2008 .

[177]  J. Berger,et al.  Fully Parameter-Free Calculation of Optical Spectra for Insulators, Semiconductors, and Metals from a Simple Polarization Functional. , 2015, Physical review letters.

[178]  Wei Chen,et al.  FireWorks: a dynamic workflow system designed for high‐throughput applications , 2015, Concurr. Comput. Pract. Exp..

[179]  Igor A. Abrikosov,et al.  Temperature dependent effective potential method for accurate free energy calculations of solids , 2013, 1303.1145.

[180]  Hartmut Hafermann,et al.  TRIQS: A toolbox for research on interacting quantum systems , 2015, Comput. Phys. Commun..

[181]  Micael J. T. Oliveira,et al.  Accuracy of Generalized Gradient Approximation functionals for density functional perturbation theory calculations , 2013, 1309.4805.

[182]  Luigi Genovese,et al.  A wavelet-based Projector Augmented-Wave (PAW) method: Reaching frozen-core all-electron precision with a systematic, adaptive and localized wavelet basis set , 2016, Comput. Phys. Commun..

[183]  Kurt Lejaeghere,et al.  The uncertainty pyramid for electronic-structure methods , 2020 .

[184]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[185]  David Vanderbilt,et al.  Metric wave approach to flexoelectricity within density functional perturbation theory , 2018, Physical Review B.

[186]  V. A. Gubanov,et al.  Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys , 1987 .

[187]  M. J. van Setten,et al.  Automation methodologies and large-scale validation for GW: Towards high-throughput GW calculations , 2017, 1709.07349.

[188]  S. I. Simak,et al.  Lattice dynamics of anharmonic solids from first principles , 2011, 1103.5590.

[189]  David Vanderbilt,et al.  Current-density implementation for calculating flexoelectric coefficients , 2018, Physical Review B.

[190]  Jordan Bieder,et al.  Thermodynamics of the α-γ transition in cerium from first principles , 2013, 1305.7481.

[191]  Claudia Ambrosch-Draxl,et al.  Wannier interpolation scheme for phonon-induced potentials: Application to bulk MgB 2 , W, and the ( 1 × 1 ) H-covered W(110) surface , 2008 .

[192]  E. Dzialoshinskii,et al.  Thermodynamic Theory of " Weak " Ferromagnetism In Antiferromagnetic Substances , 2022 .

[193]  Fang Liu,et al.  Recent developments in the ABINIT software package , 2016, Comput. Phys. Commun..

[194]  Wei Chen,et al.  Accurate band gaps of extended systems via efficient vertex corrections in G W , 2015 .

[195]  Gian-Marco Rignanese,et al.  Computationally driven high-throughput identification of CaTe and Li3Sb as promising candidates for high-mobility p -type transparent conducting materials , 2018, Physical Review Materials.