A Vegetation Mapping Strategy for Conifer Forests by Combining Airborne LiDAR Data and Aerial Imagery

Abstract. Accurate vegetation mapping is critical for natural resources management, ecological analysis, and hydrological modeling, among other tasks. Remotely sensed multispectral and hyperspectral imageries have proved to be valuable inputs to the vegetation mapping process, but they can provide only limited vegetation structure characteristics, which are critical for differentiating vegetation communities in compositionally homogeneous forests. Light detection and ranging (LiDAR) can accurately measure the forest vertical and horizontal structures and provide a great opportunity for solving this problem. This study introduces a strategy using both multispectral aerial imagery and LiDAR data to map vegetation composition and structure over large spatial scales. Our approach included the use of a Bayesian information criterion algorithm to determine the optimized number of vegetation groups within mixed conifer forests in two study areas in the Sierra Nevada, California, and an unsupervised classification technique and post hoc analysis to map these vegetation groups across both study areas. The results show that the proposed strategy can recognize four and seven vegetation groups at the two study areas, respectively. Each vegetation group has its unique vegetation structure characteristics or vegetation species composition. The overall accuracy and kappa coefficient of the vegetation mapping results are over 78% and 0.64 for both study sites. Résumé. La cartographie précise de la végétation est essentielle entre autres pour la gestion des ressources naturelles, l’analyse écologique, et la modélisation hydrologique. Les approches d’imagerie multispectrale et hyperspectrale par télédétection se sont avérées de précieuses contributions au processus de la cartographie de la végétation, mais elles ne peuvent fournir qu’un nombre limité de caractéristiques sur la structure de la végétation, qui sont essentielles pour différencier les communautés végétales dans les forêts de composition homogènes. La télédétection par laser «light detection and ranging» (LiDAR) peut mesurer avec précision les structures verticales et horizontales de la forêt, et fournit une formidable opportunité de résoudre ce problème. Cette étude présente une stratégie qui utilise à la fois l’imagerie multispectrale aérienne et des données LiDAR pour cartographier la composition et la structure de la végétation à grandes échelles spatiales. Notre approche comprenait l’utilisation d’un algorithme du critère d’information Bayésien pour déterminer le nombre optimal de groupes de végétation dans les forêts mixtes de conifères sur deux zones d’étude dans les Sierra Nevada, en Californie, ainsi qu’une technique de classification non supervisée et une analyse post hoc pour cartographier ces groupes de végétation dans les deux zones d’étude. Les résultats montrent que la stratégie proposée peut reconnaitre quatre et sept groupes de végétation dans les deux zones d’étude respectivement. Chaque groupe de végétation a des caractéristiques uniques de structure de la végétation ou de composition des espèces de la végétation. La précision globale et le coefficient kappa des résultats de la cartographie de la végétation sont de plus de 78% et 0,64 pour les deux sites d’étude.

[1]  Yanjun Su,et al.  A practical method for SRTM DEM correction over vegetated mountain areas , 2014 .

[2]  Christine Pohl,et al.  Multisensor image fusion in remote sensing: concepts, methods and applications , 1998 .

[3]  W. Cohen,et al.  Lidar Remote Sensing for Ecosystem Studies , 2002 .

[4]  Moses Azong Cho,et al.  Mapping tree species composition in South African savannas using an integrated airborne spectral and LiDAR system , 2012 .

[5]  P. Coppin,et al.  Impact of forest canopy on quality and accuracy of GPS measurements , 1999 .

[6]  Åsa Persson,et al.  Identifying species of individual trees using airborne laser scanner , 2004 .

[7]  C. Daly,et al.  A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain , 1994 .

[8]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[9]  K. Lim,et al.  Estimation of above ground forest biomass from airborne discrete return laser scanner data using canopy-based quantile estimators , 2004 .

[10]  Andrew T. Hudak,et al.  Discrete return lidar-based prediction of leaf area index in two conifer forests , 2008 .

[11]  Maggi Kelly,et al.  A spatial–temporal approach to monitoring forest disease spread using multi-temporal high spatial resolution imagery , 2006 .

[12]  Barbara Koch,et al.  Exploring full-waveform LiDAR parameters for tree species classification , 2011, Int. J. Appl. Earth Obs. Geoinformation.

[13]  E. Næsset,et al.  Classifying species of individual trees by intensity and structure features derived from airborne laser scanner data , 2009 .

[14]  Donald McKenzie,et al.  Forest Structure and Fire Hazard in Dry Forests of the Western United States , 2005 .

[15]  Carl N. Skinner,et al.  Basic principles of forest fuel reduction treatments , 2005 .

[16]  Gregory Asner,et al.  Mapping Savanna Tree Species at Ecosystem Scales Using Support Vector Machine Classification and BRDF Correction on Airborne Hyperspectral and LiDAR Data , 2012, Remote. Sens..

[17]  Scott L. Stephens,et al.  Evaluation of the effects of silvicultural and fuels treatments on potential fire behaviour in Sierra Nevada mixed-conifer forests , 1998 .

[18]  A. Strahler,et al.  Monitoring vegetation phenology using MODIS , 2003 .

[19]  T. T. Veblen,et al.  LANDSCAPE INFLUENCES ON OCCURRENCE AND SPREAD OF WILDFIRES IN PATAGONIAN FORESTS AND SHRUBLANDS , 2005 .

[20]  Marguerite Madden,et al.  Hyperspectral image data for mapping wetland vegetation , 2003, Wetlands.

[21]  J. V. Ryzin,et al.  Clustering Algorithms@@@Cluster Analysis Algorithms@@@Classification and Clustering , 1981 .

[22]  Thomas T. Veblen,et al.  Detection of spruce beetle-induced tree mortality using high- and medium-resolution remotely sensed imagery , 2015 .

[23]  B. Xu,et al.  Land-use/land-cover classification with multispectral and hyperspectral EO-1 data , 2007 .

[24]  S. Popescu Estimating biomass of individual pine trees using airborne lidar , 2007 .

[25]  E. Chuvieco,et al.  Mapping and inventory of forest fires from digital processing of tm data , 1988 .

[26]  H. Andersen,et al.  Tree species differentiation using intensity data derived from leaf-on and leaf-off airborne laser scanner data , 2009 .

[27]  Q. Guo,et al.  Comparison of elevation and remote sensing derived products as auxiliary data for climate surface interpolation , 2014 .

[28]  Simon Ferrier,et al.  Incorporating expert opinion and fine-scale vegetation mapping into statistical models of faunal distribution , 2001 .

[29]  Jay Gao Remote Sensing Of The Environment An Earth Resource Perspec Five, 2 nd Edition , 2006 .

[30]  Janet Franklin,et al.  A Neural Network Method for Efficient Vegetation Mapping , 1999 .

[31]  L. Bruzzone,et al.  Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data , 2012 .

[32]  Ross A. Hill,et al.  Mapping woodland species composition and structure using airborne spectral and LiDAR data , 2005 .

[33]  Nikos Koutsias,et al.  Object-based classification using Quickbird imagery for delineating forest vegetation polygons in a Mediterranean test site , 2008 .

[34]  Maggi Kelly,et al.  Quantifying Ladder Fuels: A New Approach Using LiDAR , 2014 .

[35]  G. A. Blackburn,et al.  Mapping individual tree location, height and species in broadleaved deciduous forest using airborne LIDAR and multi‐spectral remotely sensed data , 2005 .

[36]  Sorin C. Popescu,et al.  Mapping surface fuel models using lidar and multispectral data fusion for fire behavior , 2008 .

[37]  E. Bork,et al.  Integrating LIDAR data and multispectral imagery for enhanced classification of rangeland vegetation: A meta analysis , 2007 .

[38]  Maggi Kelly,et al.  Predicting Surface Fuel Models and Fuel Metrics Using Lidar and CIR Imagery in a Dense, Mountainous Forest , 2013 .

[39]  P. Gong,et al.  Automated methods for measuring DBH and tree heights with a commercial scanning lidar , 2011 .

[40]  P. Treitz,et al.  Mapping stand-level forest biophysical variables for a mixedwood boreal forest using lidar: an examination of scanning density , 2006 .

[41]  D. Roberts,et al.  Small-footprint lidar estimation of sub-canopy elevation and tree height in a tropical rain forest landscape , 2004 .

[42]  Alex C. Lee,et al.  Empirical relationships between AIRSAR backscatter and LiDAR-derived forest biomass, Queensland, Australia , 2006 .

[43]  Vincent Kanade,et al.  Clustering Algorithms , 2021, Wireless RF Energy Transfer in the Massive IoT Era.

[44]  Jörgen Wallerman,et al.  Estimating field-plot data of forest stands using airborne laser scanning and SPOT HRG data , 2007 .

[45]  Q. Guo,et al.  Effects of Topographic Variability and Lidar Sampling Density on Several DEM Interpolation Methods , 2010 .

[46]  Peng Gong,et al.  Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery , 2004 .

[47]  Siamak Khorram,et al.  Regional Scale Land Cover Characterization Using MODIS-NDVI 250 m Multi-Temporal Imagery: A Phenology-Based Approach , 2006 .

[48]  S. Reutebuch,et al.  A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods , 2006 .

[49]  Giles M. Foody,et al.  Sample size determination for image classification accuracy assessment and comparison , 2009 .

[50]  C. Margules,et al.  Indicators of Biodiversity for Ecologically Sustainable Forest Management , 2000 .

[51]  S. Ustin,et al.  Application of multiple endmember spectral mixture analysis (MESMA) to AVIRIS imagery for coastal salt marsh mapping: a case study in China Camp, CA, USA , 2005 .

[52]  S. Talbot,et al.  Intermediate-scale vegetation mapping of Innoko National Wildlife Refuge, Alaska using Landsat MSS digital data , 1988 .

[53]  Janet Franklin,et al.  Thematic mapper analysis of coniferous forest structure and composition , 1986 .

[54]  Matti Maltamo,et al.  Airborne discrete-return LIDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index , 2011 .

[55]  O. Mutanga,et al.  Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review , 2010, Wetlands Ecology and Management.

[56]  Emilio Chuvieco,et al.  Estimation of leaf area index and covered ground from airborne laser scanner (Lidar) in two contrasting forests , 2004 .

[57]  Wenkai Li,et al.  SRTM DEM Correction in Vegetated Mountain Areas through the Integration of Spaceborne LiDAR, Airborne LiDAR, and Optical Imagery , 2015, Remote. Sens..

[58]  F. Pedrotti Plant and Vegetation Mapping , 2012 .

[59]  Hugh G. Gauch,et al.  Multivariate analysis in community ecology , 1984 .

[60]  J. R. Jensen Remote Sensing of the Environment: An Earth Resource Perspective , 2000 .

[61]  Elizabeth Thompson,et al.  Evaluating Error in Using the National Vegetation Classification System for Ecological Community Mapping in Northern New England , USA , 2005 .

[62]  J. Franklin Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients , 1995 .

[63]  P. Atkinson,et al.  Deriving DSMs from LiDAR data with kriging , 2002 .

[64]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[65]  Leen-Kiat Soh,et al.  Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices , 1999, IEEE Trans. Geosci. Remote. Sens..

[66]  D. Donoghue,et al.  Remote sensing of species mixtures in conifer plantations using LiDAR height and intensity data , 2007 .

[67]  J. Reitberger,et al.  Analysis of full waveform LIDAR data for the classification of deciduous and coniferous trees , 2008 .

[68]  B. McCune,et al.  Analysis of Ecological Communities , 2002 .

[69]  A. Hudak,et al.  A Comparison of Accuracy and Cost of LiDAR versus Stand Exam Data for Landscape Management on the Malheur National Forest , 2011, Journal of Forestry.

[70]  Jan Lepš,et al.  Multivariate Analysis of Ecological Data , 2006 .

[71]  Yichun Xie,et al.  Remote sensing imagery in vegetation mapping: a review , 2008 .

[72]  Jeffrey R Dunk,et al.  Using forest inventory data to assess fisher resting habitat suitability in California. , 2006, Ecological applications : a publication of the Ecological Society of America.

[73]  M. Flood,et al.  LiDAR remote sensing of forest structure , 2003 .

[74]  Sarah McCaffrey,et al.  Science basis for changing forest structure to modify wildfire behavior and severity , 2004 .

[75]  E. Næsset Estimating timber volume of forest stands using airborne laser scanner data , 1997 .

[76]  Jan Lepš,et al.  Multivariate Analysis of Ecological Data using CANOCO , 2003 .

[77]  P. Gessler,et al.  Forest Service-- National AgroforestryCenter 1-1-2010 Landscape-scale parameterization of a tree-level forest growth model : a k-nearest neighbor imputation approach incorporating LiDAR data , 2013 .

[78]  M. Kelly,et al.  LiDAR as a Tool to Characterize Wildlife Habitat: California Spotted Owl Nesting Habitat as an Example , 2011 .

[79]  Åsa Persson,et al.  Species identification of individual trees by combining high resolution LiDAR data with multi‐spectral images , 2008 .

[80]  Yao Wang,et al.  A robust and scalable clustering algorithm for mixed type attributes in large database environment , 2001, KDD '01.

[81]  M. Cho,et al.  Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment , 2012 .

[82]  M. Nilsson Estimation of tree heights and stand volume using an airborne lidar system , 1996 .