A class of generalized orthonormal functions
暂无分享,去创建一个
[1] Kok Lay Teo,et al. Continuous-time envelope-constrained filter design via Laguerre filters and 𝒽∞ optimization methods , 1998, IEEE Trans. Signal Process..
[2] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[3] B. Moore. Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .
[4] Luigi Fortuna,et al. A New Property of Laguerre Functions , 2002 .
[5] P. V. D. Hof,et al. System identification with generalized orthonormal basis functions , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.
[6] J. Miller. Numerical Analysis , 1966, Nature.
[7] B. Wahlberg. System identification using Laguerre models , 1991 .
[8] K. Glover. All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .
[9] P. V. D. Hof,et al. A generalized orthonormal basis for linear dynamical systems , 1995, IEEE Trans. Autom. Control..
[10] Michel Verhaegen,et al. Continuous-time identification of SISO systems using Laguerre functions , 1999, IEEE Trans. Signal Process..
[11] Daniël De Zutter,et al. Passive reduced order multiport modeling: the Padé-Laguerre, Krylov-Arnoldi-SVD connection. , 1999 .
[12] Luc Knockaert,et al. On orthonormal Muntz-Laguerre filters , 2001, IEEE Trans. Signal Process..