MEG and EEG data analysis with MNE-Python

Magnetoencephalography and electroencephalography (M/EEG) measure the weak electromagnetic signals generated by neuronal activity in the brain. Using these signals to characterize and locate neural activation in the brain is a challenge that requires expertise in physics, signal processing, statistics, and numerical methods. As part of the MNE software suite, MNE-Python is an open-source software package that addresses this challenge by providing state-of-the-art algorithms implemented in Python that cover multiple methods of data preprocessing, source localization, statistical analysis, and estimation of functional connectivity between distributed brain regions. All algorithms and utility functions are implemented in a consistent manner with well-documented interfaces, enabling users to create M/EEG data analysis pipelines by writing Python scripts. Moreover, MNE-Python is tightly integrated with the core Python libraries for scientific comptutation (NumPy, SciPy) and visualization (matplotlib and Mayavi), as well as the greater neuroimaging ecosystem in Python via the Nibabel package. The code is provided under the new BSD license allowing code reuse, even in commercial products. Although MNE-Python has only been under heavy development for a couple of years, it has rapidly evolved with expanded analysis capabilities and pedagogical tutorials because multiple labs have collaborated during code development to help share best practices. MNE-Python also gives easy access to preprocessed datasets, helping users to get started quickly and facilitating reproducibility of methods by other researchers. Full documentation, including dozens of examples, is available at http://martinos.org/mne.

[1]  Joshua Carp,et al.  The secret lives of experiments: Methods reporting in the fMRI literature , 2012, NeuroImage.

[2]  Richard M. Leahy,et al.  Brainstorm: A User-Friendly Application for MEG/EEG Analysis , 2011, Comput. Intell. Neurosci..

[3]  Steen Moeller,et al.  The Human Connectome Project: A data acquisition perspective , 2012, NeuroImage.

[4]  Nicolas Pinto,et al.  PyCUDA and PyOpenCL: A scripting-based approach to GPU run-time code generation , 2009, Parallel Comput..

[5]  Maureen Clerc,et al.  Graph-Based Variability Estimation in Single-Trial Event-Related Neural Responses , 2010, IEEE Transactions on Biomedical Engineering.

[6]  Gilles Louppe,et al.  Independent consultant , 2013 .

[7]  E. Halgren,et al.  Dynamic Statistical Parametric Mapping Combining fMRI and MEG for High-Resolution Imaging of Cortical Activity , 2000, Neuron.

[8]  R. Oostenveld,et al.  Nonparametric statistical testing of EEG- and MEG-data , 2007, Journal of Neuroscience Methods.

[9]  Richard M. Leahy,et al.  A comparison of random field theory and permutation methods for the statistical analysis of MEG data , 2005, NeuroImage.

[10]  R. Ilmoniemi,et al.  Interpreting magnetic fields of the brain: minimum norm estimates , 2006, Medical and Biological Engineering and Computing.

[11]  Karl J. Friston,et al.  The problem of low variance voxels in statistical parametric mapping; a new hat avoids a ‘haircut’ , 2012, NeuroImage.

[12]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[13]  Karl J. Friston,et al.  EEG and MEG Data Analysis in SPM8 , 2011, Comput. Intell. Neurosci..

[14]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[15]  J. Schoffelen,et al.  Source connectivity analysis with MEG and EEG , 2009, Human brain mapping.

[16]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[17]  David P. Wipf,et al.  A unified Bayesian framework for MEG/EEG source imaging , 2009, NeuroImage.

[18]  A. Scott,et al.  MEG-SIM: A Web Portal for Testing MEG Analysis Methods using Realistic Simulated and Empirical Data , 2011, Neuroinformatics.

[19]  Martin Luessi,et al.  MNE software for processing MEG and EEG data , 2014, NeuroImage.

[20]  Joshua Carp,et al.  On the Plurality of (Methodological) Worlds: Estimating the Analytic Flexibility of fMRI Experiments , 2012, Front. Neurosci..

[21]  J Gross,et al.  REPRINTS , 1962, The Lancet.

[22]  M. Hallett,et al.  Identifying true brain interaction from EEG data using the imaginary part of coherency , 2004, Clinical Neurophysiology.

[23]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[24]  R D Pascual-Marqui,et al.  Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. , 2002, Methods and findings in experimental and clinical pharmacology.

[25]  Satrajit S. Ghosh,et al.  Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing Framework in Python , 2011, Front. Neuroinform..

[26]  Théodore Papadopoulo,et al.  OpenMEEG: opensource software for quasistatic bioelectromagnetics , 2010, Biomedical engineering online.

[27]  Arnaud Delorme,et al.  EEGLAB, SIFT, NFT, BCILAB, and ERICA: New Tools for Advanced EEG Processing , 2011, Comput. Intell. Neurosci..

[28]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[29]  Richard A. Becker,et al.  A Tour of Trellis Graphics , 1996 .

[30]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[31]  F. Varela,et al.  Measuring phase synchrony in brain signals , 1999, Human brain mapping.

[32]  W. Drongelen,et al.  Localization of brain electrical activity via linearly constrained minimum variance spatial filtering , 1997, IEEE Transactions on Biomedical Engineering.

[33]  P. Fries Neuronal gamma-band synchronization as a fundamental process in cortical computation. , 2009, Annual review of neuroscience.

[34]  M. Scherg,et al.  Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. , 1985, Electroencephalography and clinical neurophysiology.

[35]  Gaël Varoquaux,et al.  Mayavi: a package for 3D visualization of scientific data , 2010, ArXiv.

[36]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[37]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[38]  A. Gramfort,et al.  Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods , 2012, Physics in medicine and biology.

[39]  L. Kaufman,et al.  Magnetic source images determined by a lead-field analysis: the unique minimum-norm least-squares estimation , 1992, IEEE Transactions on Biomedical Engineering.

[40]  Jens Haueisen,et al.  Functional Brain Imaging with M/EEG Using Structured Sparsity in Time-Frequency Dictionaries , 2011, IPMI.

[41]  R. Ilmoniemi,et al.  Signal-space projection method for separating MEG or EEG into components , 1997, Medical and Biological Engineering and Computing.

[42]  Joachim Gross,et al.  Good practice for conducting and reporting MEG research , 2013, NeuroImage.

[43]  Jens Timmer,et al.  Handbook of Time Series Analysis , 2006 .

[44]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[45]  Kensuke Sekihara,et al.  MEG/EEG Source Reconstruction, Statistical Evaluation, and Visualization with NUTMEG , 2011, Comput. Intell. Neurosci..

[46]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[47]  A. Iacobucci Spectral Analysis for Economic Time Series , 2005 .

[48]  O Bertrand,et al.  Combined EEG and MEG recordings of visual 40 Hz responses to illusory triangles in human , 1997, Neuroreport.

[49]  Robert Oostenveld,et al.  FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data , 2010, Comput. Intell. Neurosci..

[50]  Harald Köstler,et al.  Numerical Mathematics of the Subtraction Method for the Modeling of a Current Dipole in EEG Source Reconstruction Using Finite Element Head Models , 2007, SIAM J. Sci. Comput..

[51]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[52]  Paul F. Dubois,et al.  Maintaining correctness in scientific programs , 2005, Comput. Sci. Eng..

[53]  Nikos Makris,et al.  Automatically parcellating the human cerebral cortex. , 2004, Cerebral cortex.

[54]  Eric Larson,et al.  The cortical dynamics underlying effective switching of auditory spatial attention , 2013, NeuroImage.

[55]  Jens Haueisen,et al.  Time-frequency mixed-norm estimates: Sparse M/EEG imaging with non-stationary source activations , 2013, NeuroImage.

[56]  Anders M. Dale,et al.  Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature , 2010, NeuroImage.