Flip distance between triangulations of a planar point set is APX-hard

In this work we consider triangulations of point sets in the Euclidean plane, i.e., maximal straight-line crossing-free graphs on a finite set of points. Given a triangulation of a point set, an edge flip is the operation of removing one edge and adding another one, such that the resulting graph is again a triangulation. Flips are a major way of locally transforming triangular meshes. We show that, given a point set S in the Euclidean plane and two triangulations T"1 and T"2 of S, it is an APX-hard problem to minimize the number of edge flips to transform T"1 to T"2.

[1]  Alexander Pilz,et al.  Flip Distance Between Triangulations of a Simple Polygon is NP-Complete , 2015, Discret. Comput. Geom..

[2]  Derick Wood,et al.  A Note on Some Tree Similarity Measures , 1982, Inf. Process. Lett..

[3]  Vinayak Pathak,et al.  Flip Distance Between Two Triangulations of a Point Set is NP-complete , 2012, CCCG.

[4]  Bruce Randall Donald,et al.  A rational rotation method for robust geometric algorithms , 1991, SCG '92.

[5]  Giorgio Gambosi,et al.  Complexity and approximation: combinatorial optimization problems and their approximability properties , 1999 .

[6]  Oyvind Hjelle,et al.  Triangulations and applications , 2006 .

[7]  L. Pournin The diameter of associahedra , 2012, 1207.6296.

[8]  J. van Leeuwen,et al.  Discrete and Computational Geometry , 2002, Lecture Notes in Computer Science.

[9]  C. Lawson Software for C1 Surface Interpolation , 1977 .

[10]  Dorit S. Hochbaum,et al.  Approximation Algorithms for the Set Covering and Vertex Cover Problems , 1982, SIAM J. Comput..

[11]  Prosenjit Bose,et al.  Every Large Point Set contains Many Collinear Points or an Empty Pentagon , 2009, CCCG.

[12]  Viggo Kann,et al.  Some APX-completeness results for cubic graphs , 2000, Theor. Comput. Sci..

[13]  Subhash Khot,et al.  Vertex cover might be hard to approximate to within 2-/spl epsiv/ , 2003, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..

[14]  Ø. Hjelle,et al.  Triangulations and Applications (Mathematics and Visualization) , 2006 .

[15]  George Karakostas,et al.  A better approximation ratio for the vertex cover problem , 2005, TALG.

[16]  Fabrizio Luccio,et al.  Lower bounds on the rotation distance of binary trees , 2010, Inf. Process. Lett..

[17]  D. Eppstein,et al.  MESH GENERATION AND OPTIMAL TRIANGULATION , 1992 .

[18]  Chee-Keng Yap,et al.  Fundamental problems of algorithmic algebra , 1999 .

[19]  Prosenjit Bose,et al.  Flips in planar graphs , 2009, Comput. Geom..

[20]  Ming Li,et al.  Better Approximation of Diagonal-Flip Transformation and Rotation Transformation , 1998, COCOON.

[21]  Robert E. Tarjan,et al.  Rotation distance, triangulations, and hyperbolic geometry , 1986, STOC '86.

[22]  Mihalis Yannakakis,et al.  Optimization, approximation, and complexity classes , 1991, STOC '88.

[23]  David Eppstein,et al.  Happy endings for flip graphs , 2006, SCG '07.

[24]  J. Cremona,et al.  ELLIPTIC CURVES: (Graduate Texts in Mathematics 111) , 1990 .

[25]  J. Milne Elliptic Curves , 2020 .

[26]  Katherine St. John,et al.  Rotation distance is fixed-parameter tractable , 2009, Inf. Process. Lett..

[27]  Marc Noy,et al.  Flipping Edges in Triangulations , 1996, SCG '96.

[28]  Christoph Burnikel Rational points on circles , 1998 .

[29]  Jean Marcel Pallo,et al.  On the Rotation Distance in the Lattice of Binary Trees , 1987, Inf. Process. Lett..

[30]  Reuven Bar-Yehuda,et al.  On approximating a vertex cover for planar graphs , 1982, STOC '82.

[31]  S. Safra,et al.  On the hardness of approximating minimum vertex cover , 2005 .

[32]  Charles L. Lawson,et al.  Transforming triangulations , 1972, Discret. Math..

[33]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[34]  Thomas Ottmann,et al.  The Edge-flipping Distance of Triangulations , 1996, J. Univers. Comput. Sci..

[35]  Brenda S. Baker,et al.  Approximation algorithms for NP-complete problems on planar graphs , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).