Energy-optimal path planning by stochastic dynamically orthogonal level-set optimization

Abstract A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. Based on partial differential equations, the methodology rigorously leverages the level-set equation that governs time-optimal reachability fronts for a given relative vehicle-speed function. To set up the energy optimization, the relative vehicle-speed and headings are considered to be stochastic and new stochastic Dynamically Orthogonal (DO) level-set equations are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle’s energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. Numerical schemes to solve the reduced stochastic DO level-set equations are obtained, and accuracy and efficiency considerations are discussed. These reduced equations are first shown to be efficient at solving the governing stochastic level-sets, in part by comparisons with direct Monte Carlo simulations. To validate the methodology and illustrate its accuracy, comparisons with semi-analytical energy-optimal path solutions are then completed. In particular, we consider the energy-optimal crossing of a canonical steady front and set up its semi-analytical solution using a energy-time nested nonlinear double-optimization scheme. We then showcase the inner workings and nuances of the energy-optimal path planning, considering different mission scenarios. Finally, we study and discuss results of energy-optimal missions in a wind-driven barotropic quasi-geostrophic double-gyre ocean circulation.

[1]  M. Ghil,et al.  Bifurcation analysis of ocean, atmosphere and climate models , 2009 .

[2]  Henk A. Dijkstra,et al.  Imperfections of the North-Atlantic wind-driven ocean circulation: continental geometry and windstress shape , 1999 .

[3]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[4]  Habib N. Najm,et al.  Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes , 2005, SIAM J. Sci. Comput..

[5]  Naomi Ehrich Leonard,et al.  Coordination of an underwater glider fleet for adaptive sampling , 2005 .

[6]  Deepak N. Subramani,et al.  Energy optimal path planning using stochastic dynamically orthogonal level set equations , 2014 .

[7]  Gabriel Oliver,et al.  Path Planning of Autonomous Underwater Vehicles in Current Fields with Complex Spatial Variability: an A* Approach , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[8]  J. A. Sethian,et al.  Fast Marching Methods , 1999, SIAM Rev..

[9]  C. W. Warren,et al.  A technique for autonomous underwater vehicle route planning , 1990, Symposium on Autonomous Underwater Vehicle Technology.

[10]  Jeng-Shyang Pan,et al.  Modern Advances in Applied Intelligence , 2014, Lecture Notes in Computer Science.

[11]  Stefan B. Williams,et al.  Large-scale path planning for Underwater Gliders in ocean currents , 2009 .

[12]  Michel Rueher,et al.  Time-minimal path planning in dynamic current fields , 2009, 2009 IEEE International Conference on Robotics and Automation.

[13]  Oscar Schofield,et al.  Slocum Gliders: Robust and ready , 2007, J. Field Robotics.

[14]  Qing Xue,et al.  Intelligent Robotic Planning Systems , 1993, World Scientific Series in Robotics and Intelligent Systems.

[15]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[16]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[17]  Pierre F. J. Lermusiaux,et al.  Science of Autonomy: Time-Optimal Path Planning and Adaptive Sampling for Swarms of Ocean Vehicles , 2016 .

[18]  James G. Bellingham,et al.  Progress toward autonomous ocean sampling networks , 2009 .

[19]  Pierre F. J. Lermusiaux,et al.  Numerical schemes for dynamically orthogonal equations of stochastic fluid and ocean flows , 2013, J. Comput. Phys..

[20]  Naomi Ehrich Leonard,et al.  Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey Bay , 2010, J. Field Robotics.

[21]  Wei Sun,et al.  Pursuit evasion game of two players under an external flow field , 2015, 2015 American Control Conference (ACC).

[22]  S.C. Shadden,et al.  Optimal trajectory generation in ocean flows , 2005, Proceedings of the 2005, American Control Conference, 2005..

[23]  Steven M. LaValle,et al.  Optimal motion planning for multiple robots having independent goals , 1998, IEEE Trans. Robotics Autom..

[24]  Salah Sukkarieh,et al.  An Efficient Path Planning and Control Algorithm for RUAV’s in Unknown and Cluttered Environments , 2010, J. Intell. Robotic Syst..

[25]  Quantum Jichi Wei Time-optimal path planning in uncertain flow fields using stochastic dynamically orthogonal level set equations , 2015 .

[26]  Deepak N. Subramani,et al.  A Stochastic Optimization Method for Energy-Based Path Planning , 2014, DyDESS.

[27]  Anjan Chakrabarty,et al.  UAV flight path planning in time varying complex wind-fields , 2013, 2013 American Control Conference.

[28]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[29]  Pierre F. J. Lermusiaux,et al.  Dynamically orthogonal field equations for continuous stochastic dynamical systems , 2009 .

[30]  Deepak N. Subramani,et al.  Energy‐optimal path planning in the coastal ocean , 2017 .

[31]  Hernan G. Arango,et al.  Circulation and Dynamics of the Western North Atlantic. Part I: Multiscale Feature Models , 1997 .

[32]  Jerrold E. Marsden,et al.  Optimal trajectory generation for a glider in time-varying 2D ocean flows B-spline model , 2008, 2008 IEEE International Conference on Robotics and Automation.

[33]  Alberto Alvarez,et al.  Path planning for autonomous underwater vehicles in realistic oceanic current fields: Application to gliders in the Western Mediterranean sea , 2009 .

[34]  David M. Fratantoni,et al.  UNDERWATER GLIDERS FOR OCEAN RESEARCH , 2004 .

[35]  Narendra Ahuja,et al.  Gross motion planning—a survey , 1992, CSUR.

[36]  Mohammad Pourmahmood Aghababa,et al.  3D path planning for underwater vehicles using five evolutionary optimization algorithms avoiding static and energetic obstacles , 2012 .

[37]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[38]  George M. Siouris,et al.  Applied Optimal Control: Optimization, Estimation, and Control , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[39]  Rustam Stolkin,et al.  Optimal AUV path planning for extended missions in complex, fast-flowing estuarine environments , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[40]  Manuela M. Veloso,et al.  Real-time randomized path planning for robot navigation , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[41]  Steve Chien,et al.  Automated Sensor Network to Advance Ocean Science , 2010 .

[42]  E. L. Nelson,et al.  AUV path planning: an A* approach to path planning with consideration of variable vehicle speeds and multiple, overlapping, time-dependent exclusion zones , 1992, Proceedings of the 1992 Symposium on Autonomous Underwater Vehicle Technology.

[43]  Helmut Alt,et al.  Computing the Fréchet distance between two polygonal curves , 1995, Int. J. Comput. Geom. Appl..

[44]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[45]  Pierre FJ Lermusiaux,et al.  Time-optimal path planning in dynamic flows using level set equations: theory and schemes , 2014, Ocean Dynamics.

[46]  Robert Sutton,et al.  An incremental stochastic motion planning technique for autonomous underwater vehicles , 2004 .

[47]  Pierre F. J. Lermusiaux,et al.  Time-optimal path planning in dynamic flows using level set equations: realistic applications , 2014, Ocean Dynamics.

[48]  D. C. Webb,et al.  SLOCUM: an underwater glider propelled by environmental energy , 2001 .

[49]  Hyun Myung,et al.  Energy efficient path planning for a marine surface vehicle considering heading angle , 2015 .

[50]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[51]  Pierre F. J. Lermusiaux,et al.  Path planning in time dependent flow fields using level set methods , 2012, 2012 IEEE International Conference on Robotics and Automation.

[52]  R. Davis,et al.  The autonomous underwater glider "Spray" , 2001 .

[53]  Igor Mezic,et al.  Minimum time feedback control of autonomous underwater vehicles , 2010, 49th IEEE Conference on Decision and Control (CDC).

[54]  Timothy W. McLain,et al.  Successive Galerkin approximations to the nonlinear optimal control of an underwater robotic vehicle , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[55]  Henk A. Dijkstra,et al.  Temporal variability of the wind-driven quasi-geostrophic double gyre ocean circulation: Basic bifurcation diagrams , 1997 .

[56]  Pierre F. J. Lermusiaux,et al.  Multiscale two-way embedding schemes for free-surface primitive equations in the “Multidisciplinary Simulation, Estimation and Assimilation System” , 2010 .

[57]  M. Ani Hsieh,et al.  Robotic manifold tracking of coherent structures in flows , 2012, 2012 IEEE International Conference on Robotics and Automation.

[58]  Pierre F. J. Lermusiaux,et al.  Path planning in multi-scale ocean flows: Coordination and dynamic obstacles , 2015 .

[59]  David R. Thompson,et al.  Spatiotemporal path planning in strong, dynamic, uncertain currents , 2010, 2010 IEEE International Conference on Robotics and Automation.

[60]  Juan Cort Sampling-Based Path Planning on Configuration-Space Costmaps , 2010 .

[61]  Henrik Schmidt,et al.  Real-time frontal mapping with AUVs in a coastal environment , 1996, OCEANS 96 MTS/IEEE Conference Proceedings. The Coastal Ocean - Prospects for the 21st Century.

[62]  Reid G. Simmons,et al.  Particle RRT for Path Planning with Uncertainty , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[63]  Yan Pailhas,et al.  Path Planning for Autonomous Underwater Vehicles , 2007, IEEE Transactions on Robotics.

[64]  Joseph Pedlosky,et al.  Ocean Circulation Theory , 1996 .

[65]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[66]  John W. Fisher,et al.  Efficient Sampling from Combinatorial Space via Bridging , 2012, AISTATS.

[67]  D. Paley,et al.  Underwater gliders: recent developments and future applications , 2004, Proceedings of the 2004 International Symposium on Underwater Technology (IEEE Cat. No.04EX869).

[68]  Naomi Ehrich Leonard,et al.  Preparing to predict: The Second Autonomous Ocean Sampling Network (AOSN-II) experiment in the Monterey Bay , 2009 .

[69]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[70]  John J. Leonard,et al.  Cooperative Localization for Autonomous Underwater Vehicles , 2009, Int. J. Robotics Res..

[71]  Shih Chien-Chou,et al.  A Framework to Evolutionary Path Planning for Autonomous Underwater Glider , 2014, IEA/AIE 2014.

[72]  C. C. Eriksen,et al.  Seaglider: a long-range autonomous underwater vehicle for oceanographic research , 2001 .

[73]  Pierre F. J. Lermusiaux,et al.  Forecasting and Reanalysis in the Monterey Bay/California Current Region for the Autonomous Ocean Sampling Network-II Experiment , 2009 .

[74]  Bart Selman,et al.  Near-Uniform Sampling of Combinatorial Spaces Using XOR Constraints , 2006, NIPS.

[75]  Henrik Schmidt,et al.  Acoustic tomography of a coastal front in Haro Strait, British Columbia , 1999 .

[76]  Matthew Dunbabin,et al.  Go with the flow : optimal AUV path planning in coastal environments , 2009, ICRA 2009.

[77]  Pierre F. J. Lermusiaux,et al.  Estimation and study of mesoscale variability in the strait of Sicily , 1999 .

[78]  T. Sapsis,et al.  Dynamical criteria for the evolution of the stochastic dimensionality in flows with uncertainty , 2012 .

[79]  S. Gugercin,et al.  An iterative SVD-Krylov based method for model reduction of large-scale dynamical systems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[80]  A. Caiti,et al.  Evolutionary path planning for autonomous underwater vehicles in a variable ocean , 2004, IEEE Journal of Oceanic Engineering.

[81]  S. Kahne,et al.  Optimal control: An introduction to the theory and ITs applications , 1967, IEEE Transactions on Automatic Control.

[82]  James G Bellingham,et al.  Robotics in Remote and Hostile Environments , 2007, Science.

[83]  H. Stommel The Slocum Mission , 1989 .

[84]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[85]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[86]  B. Cushman-Roisin,et al.  Introduction to geophysical fluid dynamics : physical and numerical aspects , 2011 .

[87]  M. Ani Hsieh,et al.  Robotic Tracking of Coherent Structures in Flows , 2014, IEEE Transactions on Robotics.

[88]  Jean-Claude Latombe,et al.  Numerical potential field techniques for robot path planning , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.