Asymptotic Convergence of Some Metaheuristics Used for Multiobjective Optimization

This paper presents the asymptotic convergence analysis of Simulated Annealing, an Artificial Immune System and a General Evolutionary Algorithm for multiobjective optimization problems. In the case of a General Evolutionary Algorithm, we refer to any algorithm in which the transition probabilities use a uniform mutation rule. We prove that these algorithms converge if elitism is used.

[1]  Carlos A. Coello Coello,et al.  Convergence Analysis of a Multiobjective Artificial Immune System Algorithm , 2004, ICARIS.

[2]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[3]  Paolo Serafini,et al.  Simulated Annealing for Multi Objective Optimization Problems , 1994 .

[4]  Julian F. Miller,et al.  Genetic and Evolutionary Computation — GECCO 2003 , 2003, Lecture Notes in Computer Science.

[5]  Emile H. L. Aarts,et al.  Simulated annealing and Boltzmann machines - a stochastic approach to combinatorial optimization and neural computing , 1990, Wiley-Interscience series in discrete mathematics and optimization.

[6]  David B. Fogel,et al.  Evolutionary Computation: Towards a New Philosophy of Machine Intelligence , 1995 .

[7]  Valerie Isham,et al.  Non‐Negative Matrices and Markov Chains , 1983 .

[8]  Carlos A. Coello Coello,et al.  Multiobjective Optimization Using Ideas from the Clonal Selection Principle , 2003, GECCO.

[9]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[10]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[11]  Carlos A. Coello Coello,et al.  Asymptotic convergence of a simulated annealing algorithm for multiobjective optimization problems , 2006, Math. Methods Oper. Res..

[12]  Erhan Çinlar,et al.  Introduction to stochastic processes , 1974 .

[13]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[14]  Günter Rudolph,et al.  Convergence analysis of canonical genetic algorithms , 1994, IEEE Trans. Neural Networks.

[15]  Hans-Paul Schwefel,et al.  Evolution and Optimum Seeking: The Sixth Generation , 1993 .

[16]  Lawrence J. Fogel,et al.  Intelligence Through Simulated Evolution: Forty Years of Evolutionary Programming , 1999 .

[17]  Simon French,et al.  Multiple Criteria Decision Making: Theory and Application , 1981 .

[18]  Fernando José Von Zuben,et al.  Learning and optimization using the clonal selection principle , 2002, IEEE Trans. Evol. Comput..

[19]  Jonathan Timmis,et al.  Artificial immune systems - a new computational intelligence paradigm , 2002 .

[20]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[21]  Lamberto Cesari,et al.  Optimization-Theory And Applications , 1983 .

[22]  J. Doob Stochastic processes , 1953 .

[23]  Jacques Teghem,et al.  Efficiency of interactive multi-objective simulated annealing through a case study , 1998, J. Oper. Res. Soc..

[24]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[25]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[26]  E. L. Ulungu,et al.  MOSA method: a tool for solving multiobjective combinatorial optimization problems , 1999 .

[27]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[28]  Günter Rudolph,et al.  Convergence properties of some multi-objective evolutionary algorithms , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[29]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[30]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..