Two-dimensional adaptive prediction, smoothing and filtering

The paper describes new algorithms drawn from the field of control engineering which extend classical Weiner smoothing and prediction concepts to cover a class of two-dimensional (2-D) problems. When combined with a recursive parameter estimator, the 2-D algorithms become self-tuning in nature and provide a powerful new class of adaptive signal processing techniques. Applications include image enhancement and multisensor signal filtering.

[1]  Michael G. Strintzis,et al.  Dynamic representation and recursive estimation of cyclic and two-dimensional processes , 1978 .

[2]  Bernard Widrow,et al.  Adaptive Signal Processing , 1985 .

[3]  B. Suresh,et al.  New results in two-dimensional Kalman filtering with applications to image restoration , 1981 .

[4]  Peter C. Young,et al.  Recursive Estimation and Time Series Analysis , 1984 .

[5]  Erhan Çinlar,et al.  Introduction to stochastic processes , 1974 .

[6]  T. Kailath,et al.  An innovations approach to least-squares estimation--Part II: Linear smoothing in additive white noise , 1968 .

[7]  B. Widrow,et al.  Adaptive noise cancelling: Principles and applications , 1975 .

[8]  P. Parks,et al.  Liapunov redesign of model reference adaptive control systems , 1966 .

[9]  JOHN w. WOODS,et al.  Kalman filtering in two dimensions , 1977, IEEE Trans. Inf. Theory.

[10]  Norbert Wiener,et al.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series , 1964 .

[11]  G. Bierman Factorization methods for discrete sequential estimation , 1977 .

[12]  Björn Wittenmark,et al.  On Self Tuning Regulators , 1973 .

[13]  Per Hagander,et al.  A self-tuning filter for fixed-lag smoothing , 1977, IEEE Trans. Inf. Theory.

[14]  T. Marzetta Two-dimensional linear prediction: Autocorrelation arrays, minimum-phase prediction error filters, and reflection coefficient arrays , 1980 .

[15]  Stephen A. Billings,et al.  Self-tuning and adaptive control: theory and applications , 1981 .

[16]  J. Woods,et al.  Estimation and identification of two dimensional images , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[17]  Song B. Park,et al.  Optimum Recursive Filtering of Noisy Two-Dimensional Data with Sequential Parameter Identification , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  M. Ekstrom,et al.  Two-dimensional spectral factorization with applications in recursive digital filtering , 1976 .

[19]  Peter Wellstead,et al.  Recursive system identification using fast algorithms , 1981 .

[20]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[21]  V. Solo,et al.  Some aspects of recursive parameter estimation , 1980 .

[22]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[23]  Thomas Kailath,et al.  A view of three decades of linear filtering theory , 1974, IEEE Trans. Inf. Theory.

[24]  J. Edmunds,et al.  Self-tuning pole/zero assignment regulators , 1979 .

[25]  R. Plackett,et al.  Principles of regression analysis , 1961 .

[26]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .