Parallel pathways for spectral coding in primate retina.

The primate retina is an exciting focus in neuroscience, where recent data from molecular genetics, adaptive optics, anatomy, and physiology, together with measures of human visual performance, are converging to provide new insights into the retinal origins of color vision. Trichromatic color vision begins when the image is sampled by short- (S), middle- (M) and long- (L) wavelength-sensitive cone photoreceptors. Diverse retinal cell types combine the cone signals to create separate luminance, red-green, and blue-yellow pathways. Each pathway is associated with distinctive retinal architectures. Thus a blue-yellow pathway originates in a bistratified ganglion cell type and associated interneurons that combine excitation from S cones and inhibition from L and M cones. By contrast, a red-green pathway, in which signals from L and M cones are opposed, is associated with the specialized anatomy of the primate fovea, in which the "midget" ganglion cells receive dominant excitatory input from a single L or M cone.

[1]  Thomas Young,et al.  II. The Bakerian Lecture. On the theory of light and colours , 1802, Philosophical Transactions of the Royal Society of London.

[2]  S. R. Y. Cajal La rétine des vertébrés , 1892 .

[3]  R. L. Valois,et al.  Analysis of response patterns of LGN cells. , 1966, Journal of the Optical Society of America.

[4]  D. Hubel,et al.  Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. , 1966, Journal of neurophysiology.

[5]  Thomas Young,et al.  On the theory of light and colours , 1967 .

[6]  P. Gouras Identification of cone mechanisms in monkey ganglion cells , 1968, The Journal of physiology.

[7]  J. Dowling,et al.  Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. , 1969, Journal of neurophysiology.

[8]  N. Daw,et al.  Cat colour vision: one cone process or several? , 1969, The Journal of physiology.

[9]  P. Gouras,et al.  Functional properties of ganglion cells of the rhesus monkey retina. , 1975, The Journal of physiology.

[10]  D. Tolhurst,et al.  Concealed colour opponency in ganglion cells of the rhesus monkey retina. , 1975, The Journal of physiology.

[11]  D. Tolhurst,et al.  Trichromatic colour opponency in ganglion cells of the rhesus monkey retina. , 1975, The Journal of physiology.

[12]  F. M. D. Monasterio Center and surround mechanisms of opponent-color X and Y ganglion cells of retina of macaques. , 1978 .

[13]  F M de Monasterio,et al.  Center and surround mechanisms of opponent-color X and Y ganglion cells of retina of macaques. , 1978, Journal of neurophysiology.

[14]  J. Caldwell,et al.  New properties of rabbit retinal ganglion cells. , 1978, The Journal of physiology.

[15]  F. M. D. Monasterio Asymmetry of on- and off-pathways of blue-sensitive cones of the retina of macaques , 1979, Brain Research.

[16]  F. D. de Monasterio Asymmetry of on- and off-pathways of blue-sensitive cones of the retina of macaques. , 1979, Brain research.

[17]  R. W. Rodieck,et al.  Retinal ganglion cell classes in the Old World monkey: morphology and central projections. , 1981, Science.

[18]  M. Slaughter,et al.  2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. , 1981, Science.

[19]  E. Zrenner,et al.  Color Vision: A Review from a Neurophysiological Perspective , 1981 .

[20]  D. W. Heeley,et al.  Cardinal directions of color space , 1982, Vision Research.

[21]  W. Paulus,et al.  A new concept of retinal colour coding , 1983, Vision Research.

[22]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[23]  A. Cowey,et al.  Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey , 1984, Neuroscience.

[24]  P. Lennie,et al.  Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[25]  R. W. Rodieck,et al.  Parasol and midget ganglion cells of the human retina , 1985, The Journal of comparative neurology.

[26]  Barry B. Lee,et al.  Neurones with strong inhibitory s-cone inputs in the macaque lateral geniculate nucleus , 1986, Vision Research.

[27]  R. Shapley,et al.  Cat and monkey retinal ganglion cells and their visual functional roles , 1986, Trends in Neurosciences.

[28]  J. Nathans,et al.  Molecular genetics of inherited variation in human color vision. , 1986, Science.

[29]  J. Nathans,et al.  Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. , 1986, Science.

[30]  Stuart C. Mangel,et al.  Horizontal cells contribute to the receptive field surround of ganglion cells in the rabbit retina , 1987, Brain Research.

[31]  D. Baylor,et al.  Spectral sensitivity of human cone photoreceptors , 1987, Nature.

[32]  B. B. Lee,et al.  An account of responses of spectrally opponent neurons in macaque lateral geniculate nucleus to successive contrast , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[33]  D. Baylor,et al.  Spectral sensitivity of cones of the monkey Macaca fascicularis. , 1987, The Journal of physiology.

[34]  B. B. Lee,et al.  The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina. , 1988, The Journal of physiology.

[35]  P. Lennie,et al.  Mechanisms of color vision. , 1988, Critical reviews in neurobiology.

[36]  D. Baylor,et al.  Spectral sensitivity of primate photoreceptors , 1988, Visual Neuroscience.

[37]  D. Ts'o,et al.  The organization of chromatic and spatial interactions in the primate striate cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  J. Mollon "Tho' she kneel'd in that place where they grew..." The uses and origins of primate colour vision. , 1989, The Journal of experimental biology.

[39]  R W Rodieck,et al.  Parasol and midget ganglion cells of the primate retina. , 1989, The Journal of comparative neurology.

[40]  WH Merigan,et al.  Chromatic and achromatic vision of macaques: role of the P pathway , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  B. B. Lee,et al.  Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker. , 1989, The Journal of physiology.

[42]  Barry B. Lee,et al.  Chapter 7 New views of primate retinal function , 1990 .

[43]  N. Logothetis,et al.  Role of the color-opponent and broad-band channels in vision , 1990, Visual Neuroscience.

[44]  D. I. Vaney,et al.  Chapter 2 The mosaic of amacrine cells in the mammalian retina , 1990 .

[45]  H. Kolb,et al.  Identification of pedicles of putative blue‐sensitive cones in the human retina , 1990, The Journal of comparative neurology.

[46]  J. Pokorny,et al.  Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[47]  H. Kolb,et al.  Anatomical pathways for color vision in the human retina , 1991, Visual Neuroscience.

[48]  A. Milam,et al.  Distribution and morphology of human cone photoreceptors stained with anti‐blue opsin , 1991, The Journal of comparative neurology.

[49]  Michael S. Landy,et al.  The Design of Chromatically Opponent Receptive Fields , 1991 .

[50]  K. Mullen,et al.  Colour vision as a post-receptoral specialization of the central visual field , 1991, Vision Research.

[51]  H. Kolb,et al.  Midget ganglion cells of the parafovea of the human retina: A Study by electron microscopy and serial section reconstructions , 1991, The Journal of comparative neurology.

[52]  R. W. Rodieck Which Cells Code for Color , 1991 .

[53]  B. Boycott,et al.  Functional architecture of the mammalian retina. , 1991, Physiological reviews.

[54]  R. Shapley,et al.  Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus , 1992, Nature.

[55]  J. Pokorny,et al.  Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights. , 1992, The Journal of physiology.

[56]  H. Kolb,et al.  Neurons of the human retina: A Golgi study , 1992, The Journal of comparative neurology.

[57]  J. Mollon,et al.  The spatial arrangement of cones in the primate fovea , 1992, Nature.

[58]  Peter Sterling,et al.  Gap junctions between the pedicles of macaque foveal cones , 1992, Vision Research.

[59]  D. Dacey,et al.  Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[60]  D. Marshak,et al.  Bipolar cells specific for blue cones in the macaque retina , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  R. W. Rodieck,et al.  Survey of the morphology of macaque retinal ganglion cells that project to the pretectum, superior colliculus, and parvicellular laminae of the lateral geniculate nucleus , 1993, The Journal of comparative neurology.

[62]  D. Dacey,et al.  Recoverin immunoreactivity in mammalian cone bipolar cells , 1993, Visual Neuroscience.

[63]  D. Dacey Morphology of a small-field bistratified ganglion cell type in the macaque and human retina , 1993, Visual Neuroscience.

[64]  J. W. Atkinson The Scientific Attitude.Frederick Grinnell , 1993 .

[65]  G. H. Jacobs THE DISTRIBUTION AND NATURE OF COLOUR VISION AMONG THE MAMMALS , 1993, Biological reviews of the Cambridge Philosophical Society.

[66]  K. D. De Valois,et al.  A multi-stage color model. , 1993, Vision research.

[67]  D. Dacey The mosaic of midget ganglion cells in the human retina , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[68]  R. L. Valois,et al.  A multi-stage color model , 1993, Vision Research.

[69]  J. Mollon,et al.  Sequence divergence, polymorphism and evolution of the middle-wave and long-wave visual pigment genes of great apes and old world monkeys , 1994, Vision Research.

[70]  Robert Shapley,et al.  Parallel neural pathways and visual function , 1994 .

[71]  David J. Calkins,et al.  M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses , 1994, Nature.

[72]  H. Kolb,et al.  Horizontal cells and cone photoreceptors in primate retina: A Golgi‐light microscopic study of spectral connectivity , 1994, The Journal of comparative neurology.

[73]  Barry B. Lee,et al.  The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type , 1994, Nature.

[74]  T. Yoshioka,et al.  A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. , 1994, Science.

[75]  V. Perry,et al.  Morphology, dendritic field size, somal size, density, and coverage of M and P retinal ganglion cells of dichromatic Cebus monkeys , 1996, Visual Neuroscience.

[76]  A. Goodchild,et al.  Horizontal cell connections with short-wavelength-sensitive cones in macaque monkey retina , 1996, Visual Neuroscience.

[77]  D. Dacey,et al.  This paper was presented at a colloquium entitled ‘ ‘ Vision : From Photon to Perception , ’ ’ organized by , 1998 .

[78]  David J. Calkins,et al.  Absence of spectrally specific lateral inputs to midget ganglion cells in primate retina , 1996, Nature.

[79]  B. B. Lee,et al.  Receptive field structure in the primate retina , 1996, Vision Research.

[80]  R H Masland Unscrambling Color Vision , 1996, Science.

[81]  K. Mullen,et al.  Losses in Peripheral Colour Sensitivity Predicted from “Hit and Miss” Post-receptoral Cone Connections , 1996, Vision Research.

[82]  D. Marshak,et al.  Synaptic Inputs to ON Parasol Ganglion Cells in the Primate Retina , 1996, The Journal of Neuroscience.

[83]  Jay Neitz,et al.  Trichromatic colour vision in New World monkeys , 1996, Nature.

[84]  Barry B. Lee,et al.  Horizontal Cells of the Primate Retina: Cone Specificity Without Spectral Opponency , 1996, Science.

[85]  Richard H Masland,et al.  Processing and encoding of visual information in the retina , 1996, Current Opinion in Neurobiology.

[86]  D R Williams,et al.  Supernormal vision and high-resolution retinal imaging through adaptive optics. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[87]  Paul R. Martin,et al.  Morphological analysis of the blue cone pathway in the retina of a New World monkey, the marmoset Callithrix jacchus , 1997, The Journal of comparative neurology.

[88]  Paul R. Martin,et al.  Evidence that Blue‐on Cells are Part of the Third Geniculocortical Pathway in Primates , 1997, The European journal of neuroscience.

[89]  J. Neitz,et al.  Variations in cone populations for red–green color vision examined by analysis of mRNA , 1998, Neuroreport.

[90]  P. Lennie,et al.  Temporal-chromatic interactions in LGN P-cells , 1998, Visual Neuroscience.

[91]  A. Goodchild,et al.  Segregation of receptive field properties in the lateral geniculate nucleus of a New-World monkey, the marmoset Callithrix jacchus. , 1998, Journal of neurophysiology.

[92]  R. L. Valois,et al.  Temporal dynamics of chromatic tuning in macaque primary visual cortex , 1998, Nature.

[93]  David J. Calkins,et al.  Neuronal chemistry and functional organization in the primate visual system , 1998, Trends in Neurosciences.

[94]  R. W. Rodieck The First Steps in Seeing , 1998 .

[95]  P Lennie,et al.  Distinctive characteristics of subclasses of red–green P-cells in LGN of macaque , 1998, Visual Neuroscience.

[96]  Paul R. Martin,et al.  Colour processing in the primate retina: recent progress , 1998, The Journal of physiology.

[97]  David J. Calkins,et al.  Microcircuitry and Mosaic of a Blue–Yellow Ganglion Cell in the Primate Retina , 1998, The Journal of Neuroscience.

[98]  B. B. Lee,et al.  Receptive fields of primate retinal ganglion cells studied with a novel technique , 1998, Visual Neuroscience.

[99]  D. Dacey,et al.  Morphology of human retinal ganglion cells with intraretinal axon collaterals , 1998, Visual Neuroscience.

[100]  Richard H Masland,et al.  Extreme Diversity among Amacrine Cells: Implications for Function , 1998, Neuron.

[101]  B. Boycott,et al.  Parallel processing in the mammalian retina: the Proctor Lecture. , 1999, Investigative ophthalmology & visual science.

[102]  David Williams,et al.  The arrangement of the three cone classes in the living human eye , 1999, Nature.

[103]  Karl R. Gegenfurtner,et al.  Color Vision: From Genes to Perception , 1999 .

[104]  D. Dacey Primate retina: cell types, circuits and color opponency , 1999, Progress in Retinal and Eye Research.

[105]  E. G. Jones,et al.  Cortical and subcortical contributions to activity-dependent plasticity in primate somatosensory cortex. , 2000, Annual review of neuroscience.

[106]  P. Lennie,et al.  Fine Structure of Parvocellular Receptive Fields in the Primate Fovea Revealed by Laser Interferometry , 2000, The Journal of Neuroscience.

[107]  D. Dacey,et al.  Interindividual and topographical variation of L:M cone ratios in monkey retinas. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[108]  Barry B. Lee,et al.  Center surround receptive field structure of cone bipolar cells in primate retina , 2000, Vision Research.

[109]  D. Garbers,et al.  Guanylyl cyclases as a family of putative odorant receptors. , 2000, Annual review of neuroscience.

[110]  S. J. Martin,et al.  Synaptic plasticity and memory: an evaluation of the hypothesis. , 2000, Annual review of neuroscience.

[111]  A. Basbaum,et al.  Pain genes?: natural variation and transgenic mutants. , 2000, Annual review of neuroscience.

[112]  J. Verweij,et al.  Physiology of L- and M-cone inputs to H1 horizontal cells in the primate retina. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[113]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[114]  D. P. King,et al.  Molecular genetics of circadian rhythms in mammals. , 2000, Annual review of neuroscience.