Computational and functional annotation at genomic scale

[1]  Todd H. Stokes,et al.  k-Nearest neighbor models for microarray gene expression analysis and clinical outcome prediction , 2010, The Pharmacogenomics Journal.

[2]  René L. Warren,et al.  Assembling millions of short DNA sequences using SSAKE , 2006, Bioinform..

[3]  Jerzy K. Kulski,et al.  Next-Generation Sequencing — An Overview of the History, Tools, and “Omic” Applications , 2016 .

[4]  W. Fiers,et al.  Nucleotide Sequence of the Gene Coding for the Bacteriophage MS2 Coat Protein , 1972, Nature.

[5]  Victor A. McKusick,et al.  A new discipline, a new name, a new journal , 1987 .

[6]  Seo Young Kim,et al.  Fuzzy Types Clustering for Microarray Data , 2005, WEC.

[7]  J. Weissenbach The rise of genomics. , 2016, Comptes rendus biologies.

[8]  David Haussler,et al.  The UCSC Genome Browser database: 2018 update , 2017, Nucleic Acids Res..

[9]  A. Oliphant,et al.  A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). , 2002, Science.

[10]  Debmalya Barh,et al.  Next-Generation Sequencing and Data Analysis: Strategies, Tools, Pipelines and Protocols , 2018 .

[11]  Helen E. Parkinson,et al.  ArrayExpress—a public database of microarray experiments and gene expression profiles , 2006, Nucleic Acids Res..

[12]  Xuegong Zhang,et al.  DEGseq: an R package for identifying differentially expressed genes from RNA-seq data , 2010, Bioinform..

[13]  Wei-Chung Cheng,et al.  Gene selection for cancer identification: a decision tree model empowered by particle swarm optimization algorithm , 2014, BMC Bioinformatics.

[14]  Xun Xu,et al.  SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads , 2013, Bioinform..

[15]  D. Altshuler,et al.  A map of human genome variation from population-scale sequencing , 2010, Nature.

[16]  T. Wetter,et al.  Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. , 2004, Genome research.

[17]  Patrick Y. Muller,et al.  Short Technical Report Processing of Gene Expression Data Generated by Quantitative Real-Time RT-PCR , 2002 .

[18]  David Haussler,et al.  Current status and new features of the Consensus Coding Sequence database , 2013, Nucleic Acids Res..

[19]  Francis S Collins,et al.  Realizing the promise of genomics in biomedical research. , 2005, JAMA.

[20]  Tanya Barrett,et al.  The Gene Expression Omnibus Database , 2016, Statistical Genomics.

[21]  Lin Liu,et al.  Comparison of Next-Generation Sequencing Systems , 2012, Journal of biomedicine & biotechnology.

[22]  F. Crick Central Dogma of Molecular Biology , 1970, Nature.

[23]  Alexander S. Mikheyev,et al.  A first look at the Oxford Nanopore MinION sequencer , 2014, Molecular ecology resources.

[24]  Debashis Ghosh,et al.  Cluster stability scores for microarray data in cancer studies , 2003, BMC Bioinformatics.

[25]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[26]  Lincoln Stein,et al.  Genome annotation: from sequence to biology , 2001, Nature Reviews Genetics.

[27]  C. Gooding,et al.  A class of human exons with predicted distant branch points revealed by analysis of AG dinucleotide exclusion zones , 2006, Genome Biology.

[28]  Hugh E. Olsen,et al.  The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community , 2016, Genome Biology.

[29]  David Hernández,et al.  De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. , 2008, Genome research.

[30]  Natalia Ivanova,et al.  The ERGOTM genome analysis and discovery system , 2003, Nucleic Acids Res..

[31]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[32]  J. Harrow,et al.  Genome annotation for clinical genomic diagnostics: strengths and weaknesses , 2017, Genome Medicine.

[33]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[34]  J. McPherson,et al.  Coming of age: ten years of next-generation sequencing technologies , 2016, Nature Reviews Genetics.

[35]  C. Devi Arockia Vanitha,et al.  Gene Expression Data Classification Using Support Vector Machine and Mutual Information-based Gene Selection☆ , 2015 .

[36]  Faraz Hach,et al.  mrsFAST: a cache-oblivious algorithm for short-read mapping , 2010, Nature Methods.

[37]  J. McPherson,et al.  A defining decade in DNA sequencing , 2014, Nature Methods.

[38]  Siu-Ming Yiu,et al.  SOAP2: an improved ultrafast tool for short read alignment , 2009, Bioinform..

[39]  M. Borodovsky,et al.  Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm , 2014, Nucleic acids research.

[40]  K. Mullis,et al.  Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. , 1985, Science.

[41]  J. Gibrat,et al.  Generations of Sequencing Technologies: From First to Next Generation , 2017 .

[42]  María Martín,et al.  The Gene Ontology: enhancements for 2011 , 2011, Nucleic Acids Res..

[43]  E. Birney,et al.  EGASP: the human ENCODE Genome Annotation Assessment Project , 2006, Genome Biology.

[44]  Jian Wang,et al.  SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler , 2012, GigaScience.

[45]  Michael Brudno,et al.  SHRiMP: Accurate Mapping of Short Color-space Reads , 2009, PLoS Comput. Biol..

[46]  J. Wolf,et al.  A field guide to whole-genome sequencing, assembly and annotation , 2014, Evolutionary applications.

[47]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[48]  Astrid Gall,et al.  Ensembl 2018 , 2017, Nucleic Acids Res..

[49]  Melissa J. Landrum,et al.  RefSeq: an update on mammalian reference sequences , 2013, Nucleic Acids Res..

[50]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..

[51]  Vincent J. Magrini,et al.  Extending assembly of short DNA sequences to handle error , 2007, Bioinform..

[52]  Susan M. Huse,et al.  Accuracy and quality of massively parallel DNA pyrosequencing , 2007, Genome Biology.

[53]  C. E. Pearson,et al.  Table S2: Trans-factors and trinucleotide repeat instability Trans-factor , 2010 .

[54]  Charles Zegar,et al.  Advantages and limitations of microarray technology in human cancer , 2003, Oncogene.

[55]  William Stafford Noble,et al.  Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project , 2007, Nature.

[56]  P. Murphy,et al.  Leptin gene expression in the brain and pituitary gland. , 1999, Endocrinology.

[57]  R. Myers,et al.  Advancements in Next-Generation Sequencing. , 2016, Annual review of genomics and human genetics.

[58]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[59]  M. Schena Genome analysis with gene expression microarrays. , 1996, BioEssays : news and reviews in molecular, cellular and developmental biology.

[60]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[61]  M. Yandell,et al.  A beginner's guide to eukaryotic genome annotation , 2012, Nature Reviews Genetics.

[62]  W. Gilbert,et al.  A new method for sequencing DNA. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[63]  R. Singer,et al.  Analyzing mRNA expression using single mRNA resolution fluorescent in situ hybridization. , 2010, Methods in enzymology.

[64]  Jason Weston,et al.  SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition , 2007, BMC Bioinformatics.

[65]  Dennis B. Troup,et al.  NCBI GEO: mining tens of millions of expression profiles—database and tools update , 2006, Nucleic Acids Res..

[66]  A. Gnirke,et al.  High-quality draft assemblies of mammalian genomes from massively parallel sequence data , 2010, Proceedings of the National Academy of Sciences.

[67]  R. Contreras,et al.  Complete nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene , 1976, Nature.

[68]  James R. Knight,et al.  Genome sequencing in microfabricated high-density picolitre reactors , 2005, Nature.

[69]  Csongor Nyulas,et al.  BioPortal: enhanced functionality via new Web services from the National Center for Biomedical Ontology to access and use ontologies in software applications , 2011, Nucleic Acids Res..

[70]  A. Ryo,et al.  Use of serial analysis of gene expression (SAGE) technology. , 2001, Journal of immunological methods.

[71]  Hanlee P. Ji,et al.  Next-generation DNA sequencing , 2008, Nature Biotechnology.

[72]  Dmitrij Frishman,et al.  Functional and structural genomics using PEDANT , 2001, Bioinform..

[73]  Paul D. Williams,et al.  Data mining in genomics. , 2008, Clinics in laboratory medicine.

[74]  A. Tretyn,et al.  Sequencing technologies and genome sequencing , 2011, Journal of Applied Genetics.

[75]  R. Fleischmann,et al.  Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.

[76]  K. Mullis,et al.  Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. , 1988, Science.

[77]  Jean-François Hocquette,et al.  Assessment of hierarchical clustering methodologies for proteomic data mining. , 2007, Journal of proteome research.

[78]  F. Sanger,et al.  Nucleotide sequence of bacteriophage φX174 DNA , 1977, Nature.

[79]  M. Snyder,et al.  High-throughput sequencing technologies. , 2015, Molecular cell.

[80]  Fei Ji,et al.  RNA‐seq: Basic Bioinformatics Analysis , 2018, Current protocols in molecular biology.

[81]  Anita Burgun-Parenthoine,et al.  A transversal approach to predict gene product networks from ontology-based similarity , 2007, BMC Bioinformatics.

[82]  Zuzana Dobbie,et al.  Processing of gene expression data generated by quantitative real-time RT-PCR. , 2002, BioTechniques.

[83]  Juliane C. Dohm,et al.  SHARCGS, a fast and highly accurate short-read assembly algorithm for de novo genomic sequencing. , 2007, Genome research.

[84]  P. Fergelot,et al.  Transcriptome variations in human CaCo-2 cells: a model for enterocyte differentiation and its link to iron absorption. , 2004, Genomics.

[85]  Josephine A. Reinhardt,et al.  De novo assembly using low-coverage short read sequence data from the rice pathogen Pseudomonas syringae pv. oryzae. , 2009, Genome research.

[86]  Pablo Henrique Caracciolo Gomes de Sá,et al.  Differential transcriptional profile of Corynebacterium pseudotuberculosis in response to abiotic stresses , 2014, BMC Genomics.

[87]  Bernard P. Puc,et al.  An integrated semiconductor device enabling non-optical genome sequencing , 2011, Nature.

[88]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[89]  Huanming Yang,et al.  A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. japonica) , 2002, Science.

[90]  J. Harrow,et al.  The GENCODE exome: sequencing the complete human exome , 2011, European Journal of Human Genetics.

[91]  A. Hamilton,et al.  Improved northern blot method for enhanced detection of small RNA , 2008, Nature Protocols.

[92]  K. Heumann,et al.  Complete nucleotide sequence of Saccharomyces cerevisiae chromosome X. , 1996, The EMBO journal.

[93]  Chris Sander,et al.  GeneQuiz: A Workbench for Sequence Analysis , 1994, ISMB.

[94]  W. Pirovano,et al.  Toward almost closed genomes with GapFiller , 2012, Genome Biology.

[95]  Alain Viari,et al.  Imagene: an integrated computer environment for sequence annotation and analysis , 1999, Bioinform..

[96]  Michael Y. Galperin,et al.  Genome Annotation and Analysis , 2003 .

[97]  Kin-Fan Au,et al.  PacBio Sequencing and Its Applications , 2015, Genom. Proteom. Bioinform..

[98]  Robert Nowak,et al.  Genomes correction and assembling: present methods and tools , 2014, Other Conferences.

[99]  M. Schatz,et al.  Hybrid error correction and de novo assembly of single-molecule sequencing reads , 2012, Nature Biotechnology.

[100]  Janet M Thornton,et al.  Genome and proteome annotation: organization, interpretation and integration , 2009, Journal of The Royal Society Interface.

[101]  R. Durbin,et al.  The Sequence Ontology: a tool for the unification of genome annotations , 2005, Genome Biology.

[102]  T Gaasterland,et al.  MAGPIE: automated genome interpretation. , 1996, Trends in genetics : TIG.

[103]  Bronwen L. Aken,et al.  GENCODE: The reference human genome annotation for The ENCODE Project , 2012, Genome research.

[104]  Mark A. Musen,et al.  How orthogonal are the OBO Foundry ontologies? , 2011, J. Biomed. Semant..

[105]  Steven J. M. Jones,et al.  De novo assembly and analysis of RNA-seq data , 2010, Nature Methods.

[106]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[107]  David A. Eccles,et al.  MinION Analysis and Reference Consortium: Phase 1 data release and analysis , 2015, F1000Research.

[108]  Paolo Fontana,et al.  Bioinformatic approaches for functional annotation and pathway inference in metagenomics data , 2012, Briefings Bioinform..

[109]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .