Deep learning applications in single-cell genomics and transcriptomics data analysis.

[1]  Sihang Zhou,et al.  scDFC: A deep fusion clustering method for single-cell RNA-seq data , 2023, Briefings Bioinform..

[2]  S. Hediyeh-zadeh,et al.  Biologically informed deep learning to query gene programs in single-cell atlases , 2023, Nature Cell Biology.

[3]  Tianwei Yu,et al.  G3DC: a Gene-Graph-Guided selective Deep Clustering method for single cell RNA-seq data , 2023, bioRxiv.

[4]  C. Zheng,et al.  scDCCA: deep contrastive clustering for single-cell RNA-seq data based on auto-encoder network , 2023, Briefings Bioinform..

[5]  R. Nussinov,et al.  Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data , 2023, Cell reports methods.

[6]  Jun Yu Li,et al.  SCIBER: a simple method for removing batch effects from single-cell RNA-sequencing data , 2022, Bioinform..

[7]  M. Gerstein,et al.  DeepVelo: Single-cell transcriptomic deep velocity field learning with neural ordinary differential equations , 2022, Science advances.

[8]  Mingyao Li,et al.  A multi-use deep learning method for CITE-seq and single-cell RNA-seq data integration with cell surface protein prediction and imputation , 2022, Nature Machine Intelligence.

[9]  Pingping Wang,et al.  DeepST: identifying spatial domains in spatial transcriptomics by deep learning , 2022, Nucleic acids research.

[10]  Chenfei Wang,et al.  Evaluation of cell-cell interaction methods by integrating single-cell RNA sequencing data with spatial information , 2022, Genome Biology.

[11]  Michael I. Jordan,et al.  DestVI identifies continuums of cell types in spatial transcriptomics data , 2022, Nature Biotechnology.

[12]  A. Akalin,et al.  Simultaneous dimensionality reduction and integration for single-cell ATAC-seq data using deep learning , 2022, Nature Machine Intelligence.

[13]  Wing Hong Wong,et al.  scJoint integrates atlas-scale single-cell RNA-seq and ATAC-seq data with transfer learning , 2022, Nature Biotechnology.

[14]  Malte D. Luecken,et al.  Benchmarking atlas-level data integration in single-cell genomics , 2021, Nature Methods.

[15]  Luonan Chen,et al.  RDAClone: Deciphering Tumor Heterozygosity through Single-Cell Genomics Data Analysis with Robust Deep Autoencoder , 2021, Genes.

[16]  Evan Z. Macosko,et al.  Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram , 2021, Nature Methods.

[17]  Rachel Patton McCord,et al.  SMILE: Mutual Information Learning for Integration of Single-cell Omics Data. , 2021, Bioinformatics.

[18]  Jean Fan,et al.  VeloViz: RNA velocity-informed embeddings for visualizing cellular trajectories , 2021, Bioinform..

[19]  Fabian J Theis,et al.  Mapping single-cell data to reference atlases by transfer learning , 2021, Nature Biotechnology.

[20]  M. Dunlop,et al.  DeLTA 2.0: A deep learning pipeline for quantifying single-cell spatial and temporal dynamics , 2021, bioRxiv.

[21]  Fabian J Theis,et al.  RNA velocity—current challenges and future perspectives , 2021, Molecular systems biology.

[22]  Kok Siong Ang,et al.  Unsupervised spatially embedded deep representation of spatial transcriptomics , 2021, bioRxiv.

[23]  Luonan Chen,et al.  Deep cross-omics cycle attention model for joint analysis of single-cell multi-omics data , 2021, Bioinform..

[24]  Lingling Zhao,et al.  Critical downstream analysis steps for single-cell RNA sequencing data , 2021, Briefings Bioinform..

[25]  Q. Nie,et al.  DEEPsc: A Deep Learning-Based Map Connecting Single-Cell Transcriptomics and Spatial Imaging Data , 2021, Frontiers in Genetics.

[26]  Xiao Chen,et al.  Potential applications of deep learning in single‐cell RNA sequencing analysis for cell therapy and regenerative medicine , 2021, Stem cells.

[27]  Xiaohui S. Xie,et al.  SAILER: scalable and accurate invariant representation learning for single-cell ATAC-seq processing and integration , 2021, bioRxiv.

[28]  Xiurui Hou,et al.  DeepCNV: a deep learning approach for authenticating copy number variations , 2021, Briefings Bioinform..

[29]  Aaron M. Streets,et al.  Joint probabilistic modeling of single-cell multi-omic data with totalVI , 2021, Nature Methods.

[30]  V. Marx Method of the Year: spatially resolved transcriptomics , 2021, Nature Methods.

[31]  Z. Bar-Joseph,et al.  GCNG: graph convolutional networks for inferring gene interaction from spatial transcriptomics data , 2020, Genome biology.

[32]  Xiaohui S. Xie,et al.  Predicting transcription factor binding in single cells through deep learning. , 2020, Science advances.

[33]  Luonan Chen,et al.  Deep-joint-learning analysis model of single cell transcriptome and open chromatin accessibility data , 2020, Briefings Bioinform..

[34]  Howard Y. Chang,et al.  BABEL enables cross-modality translation between multiomic profiles at single-cell resolution , 2020, Proceedings of the National Academy of Sciences.

[35]  Raphael Gottardo,et al.  Integrated analysis of multimodal single-cell data , 2020, Cell.

[36]  Joseph Bergenstråhle,et al.  Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography , 2020, Communications Biology.

[37]  Davide Maspero,et al.  A review of computational strategies for denoising and imputation of single-cell transcriptomic data. , 2020, Briefings in bioinformatics.

[38]  S. Teichmann,et al.  Single cell transcriptomics comes of age , 2020, Nature Communications.

[39]  Lihua Zhang,et al.  Inference and analysis of cell-cell communication using CellChat , 2020, Nature Communications.

[40]  Quan Zou,et al.  Clustering and classification methods for single-cell RNA-sequencing data , 2020, Briefings Bioinform..

[41]  M. Cheon,et al.  A practical application of generative adversarial networks for RNA-seq analysis to predict the molecular progress of Alzheimer's disease , 2020, PLoS Comput. Biol..

[42]  Liang Chen,et al.  Integrating Deep Supervised, Self-Supervised and Unsupervised Learning for Single-Cell RNA-seq Clustering and Annotation , 2020, Genes.

[43]  Angshul Majumdar,et al.  deepMc: Deep Matrix Completion for Imputation of Single-Cell RNA-seq Data. , 2020, Journal of computational biology : a journal of computational molecular cell biology.

[44]  R. Tewhey,et al.  CoRE-ATAC: A deep learning model for the functional classification of regulatory elements from single cell and bulk ATAC-seq data , 2020, bioRxiv.

[45]  Insuk Lee,et al.  Single-cell ATAC sequencing analysis: From data preprocessing to hypothesis generation , 2020, Computational and structural biotechnology journal.

[46]  Gunnar Rätsch,et al.  SCIM: universal single-cell matching with unpaired feature sets , 2020, bioRxiv.

[47]  Holger Heyn,et al.  Seeded NMF regression to Deconvolute Spatial Transcriptomics Spots with Single-Cell Transcriptomes , 2020 .

[48]  Lingling An,et al.  scDoc: Correcting Drop-out Events in Single-cell RNA-seq Data , 2019, bioRxiv.

[49]  Asif Mehmood,et al.  SRVAE: super resolution using variational autoencoders , 2020, Defense + Commercial Sensing.

[50]  Dan Zhang,et al.  Construction of a human cell landscape at single-cell level , 2020, Nature.

[51]  P. Qiu Embracing the dropouts in single-cell RNA-seq analysis , 2020, Nature Communications.

[52]  Mirjana Efremova,et al.  CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes , 2020, Nature Protocols.

[53]  Tianwei Yu,et al.  scBatch: batch-effect correction of RNA-seq data through sample distance matrix adjustment , 2020, Bioinform..

[54]  Alexey M. Kozlov,et al.  Eleven grand challenges in single-cell data science , 2020, Genome Biology.

[55]  Feng Yan,et al.  From reads to insight: a hitchhiker’s guide to ATAC-seq data analysis , 2020, Genome Biology.

[56]  Yiguang Hong,et al.  Unsupervised topological alignment for single-cell multi-omics integration , 2020, bioRxiv.

[57]  Stephanie C. Hicks,et al.  A systematic evaluation of single-cell RNA-sequencing imputation methods , 2020, Genome Biology.

[58]  Zhigang Zhang,et al.  scIGANs: single-cell RNA-seq imputation using generative adversarial networks , 2020, bioRxiv.

[59]  Kok Siong Ang,et al.  A benchmark of batch-effect correction methods for single-cell RNA sequencing data , 2020, Genome Biology.

[60]  Method of the Year 2019: Single-cell multimodal omics , 2020, Nature Methods.

[61]  S. Preissl,et al.  Single-cell multimodal omics: the power of many , 2020, Nature Methods.

[62]  Asif Mehmood,et al.  SoftAdapt: Techniques for Adaptive Loss Weighting of Neural Networks with Multi-Part Loss Functions , 2019, ArXiv.

[63]  Antonio Scialdone,et al.  COMUNET: a tool to explore and visualize intercellular communication , 2019, bioRxiv.

[64]  Khalid Raza,et al.  Integrative approaches to reconstruct regulatory networks from multi-omics data: A review of state-of-the-art methods , 2019, Comput. Biol. Chem..

[65]  Jie Zheng,et al.  Emerging deep learning methods for single-cell RNA-seq data analysis , 2019, Quantitative Biology.

[66]  Quan Nguyen,et al.  SpaCell: integrating tissue morphology and spatial gene expression to predict disease cells , 2019, bioRxiv.

[67]  Mohammad Norouzi,et al.  Don't Blame the ELBO! A Linear VAE Perspective on Posterior Collapse , 2019, NeurIPS.

[68]  Fabian J Theis,et al.  Generalizing RNA velocity to transient cell states through dynamical modeling , 2019, Nature Biotechnology.

[69]  Tao Jiang,et al.  SCALE method for single-cell ATAC-seq analysis via latent feature extraction , 2019, Nature Communications.

[70]  Yi Pan,et al.  SinNLRR: a robust subspace clustering method for cell type detection by non-negative and low-rank representation , 2019, Bioinform..

[71]  Weidong Tian,et al.  A novel approach to remove the batch effect of single-cell data , 2019, Cell Discovery.

[72]  Patrik L. Ståhl,et al.  High-definition spatial transcriptomics for in situ tissue profiling , 2019, Nature Methods.

[73]  Lior Pachter,et al.  Interpretable factor models of single-cell RNA-seq via variational autoencoders , 2019, bioRxiv.

[74]  Kerstin B. Meyer,et al.  BBKNN: fast batch alignment of single cell transcriptomes , 2019, Bioinform..

[75]  Taghi M. Khoshgoftaar,et al.  A survey on Image Data Augmentation for Deep Learning , 2019, Journal of Big Data.

[76]  Michel DuPage,et al.  Treg programming and therapeutic reprogramming in cancer , 2019, Immunology.

[77]  Tomas E. Ward,et al.  Generative Adversarial Networks in Computer Vision , 2019, ACM Comput. Surv..

[78]  Tom Hill,et al.  A Simple Deep Learning Approach for Detecting Duplications and Deletions in Next-Generation Sequencing Data , 2019, bioRxiv.

[79]  Paul J. Hoffman,et al.  Comprehensive Integration of Single-Cell Data , 2018, Cell.

[80]  Fabian J Theis,et al.  Current best practices in single‐cell RNA‐seq analysis: a tutorial , 2019, Molecular systems biology.

[81]  Travis S. Johnson,et al.  BERMUDA: a novel deep transfer learning method for single-cell RNA sequencing batch correction reveals hidden high-resolution cellular subtypes , 2019, Genome Biology.

[82]  Xiang Zhou,et al.  Accuracy, robustness and scalability of dimensionality reduction methods for single-cell RNA-seq analysis , 2019, Genome Biology.

[83]  Bryan D. Bryson,et al.  Efficient integration of heterogeneous single-cell transcriptomes using Scanorama , 2019, Nature Biotechnology.

[84]  Ji Wan,et al.  Clustering single-cell RNA-seq data with a model-based deep learning approach , 2019, Nature Machine Intelligence.

[85]  Lani F. Wu,et al.  Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning , 2019, Nature Methods.

[86]  Evan Z. Macosko,et al.  Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution , 2019, Science.

[87]  Jihwan Park,et al.  Deep learning enables accurate clustering and batch effect removal in single-cell RNA-seq analysis , 2019, bioRxiv.

[88]  Fabian J Theis,et al.  Single-cell RNA-seq denoising using a deep count autoencoder , 2019, Nature Communications.

[89]  Andrew J. Hill,et al.  The single cell transcriptional landscape of mammalian organogenesis , 2019, Nature.

[90]  M. Hemberg,et al.  Challenges in unsupervised clustering of single-cell RNA-seq data , 2019, Nature Reviews Genetics.

[91]  J. Ajani,et al.  iTALK: an R Package to Characterize and Illustrate Intercellular Communication , 2019, bioRxiv.

[92]  Rui Li,et al.  Imputation of single-cell gene expression with an autoencoder neural network , 2018, bioRxiv.

[93]  Fabian J Theis,et al.  A test metric for assessing single-cell RNA-seq batch correction , 2018, Nature Methods.

[94]  Lai Guan Ng,et al.  Dimensionality reduction for visualizing single-cell data using UMAP , 2018, Nature Biotechnology.

[95]  R. Dummer,et al.  Peripheral Blood TCR Repertoire Profiling May Facilitate Patient Stratification for Immunotherapy against Melanoma , 2018, Cancer Immunology Research.

[96]  Xiangyu Luo,et al.  Batch Effects Correction with Unknown Subtypes , 2018, Journal of the American Statistical Association.

[97]  A. Majumdar,et al.  AutoImpute: Autoencoder based imputation of single-cell RNA-seq data , 2018, Scientific Reports.

[98]  Michael I. Jordan,et al.  Deep Generative Modeling for Single-cell Transcriptomics , 2018, Nature Methods.

[99]  Xuequn Shang,et al.  Combining gene ontology with deep neural networks to enhance the clustering of single cell RNA-Seq data , 2018, bioRxiv.

[100]  Jin Gu,et al.  VASC: Dimension Reduction and Visualization of Single-cell RNA-seq Data by Deep Variational Autoencoder , 2018, Genom. Proteom. Bioinform..

[101]  James T. Webber,et al.  Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris , 2018, Nature.

[102]  Kwanjeera Wanichthanarak,et al.  Rise of Deep Learning for Genomic, Proteomic, and Metabolomic Data Integration in Precision Medicine , 2018, Omics : a journal of integrative biology.

[103]  S. Picelli,et al.  Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies , 2018, Nature Protocols.

[104]  Ken Chen,et al.  SiCloneFit: Bayesian inference of population structure, genotype, and phylogeny of tumor clones from single-cell genome sequencing data , 2018, Genome Research.

[105]  Pierre Machart,et al.  Realistic in silico generation and augmentation of single cell RNA-seq data using Generative Adversarial Neural Networks , 2018, bioRxiv.

[106]  Aviv Regev,et al.  A revised airway epithelial hierarchy includes CFTR-expressing ionocytes , 2018, Nature.

[107]  P. Verstreken,et al.  A Single-Cell Transcriptome Atlas of the Aging Drosophila Brain , 2018, Cell.

[108]  Ambrose J. Carr,et al.  Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment , 2018, Cell.

[109]  Uri Shaham,et al.  Batch Effect Removal via Batch-Free Encoding , 2018, bioRxiv.

[110]  Ziv Bar-Joseph,et al.  Deep learning for inferring gene relationships from single-cell expression data , 2019, Proceedings of the National Academy of Sciences.

[111]  Lana X. Garmire,et al.  DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data , 2018, Genome Biology.

[112]  Christoph Ziegenhain,et al.  zUMIs - A fast and flexible pipeline to process RNA sequencing data with UMIs , 2017, bioRxiv.

[113]  Fabian J Theis,et al.  Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics , 2018, Science.

[114]  Davis J. McCarthy,et al.  Combined single-cell profiling of expression and DNA methylation reveals splicing regulation and heterogeneity , 2018, bioRxiv.

[115]  Casper Kaae Sønderby,et al.  scVAE: Variational auto-encoders for single-cell gene expression data , 2018, bioRxiv.

[116]  Nancy R. Zhang,et al.  SAVER: Gene expression recovery for single-cell RNA sequencing , 2018, Nature Methods.

[117]  Laleh Haghverdi,et al.  Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors , 2018, Nature Biotechnology.

[118]  J. Marioni,et al.  Using single‐cell genomics to understand developmental processes and cell fate decisions , 2018, Molecular systems biology.

[119]  Wei Vivian Li,et al.  An accurate and robust imputation method scImpute for single-cell RNA-seq data , 2018, Nature Communications.

[120]  S. Orkin,et al.  Mapping the Mouse Cell Atlas by Microwell-Seq , 2018, Cell.

[121]  Wallace Marshall,et al.  Deep Convolutional and Recurrent Neural Networks for Cell Motility Discrimination and Prediction , 2019, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[122]  Kevin R. Moon,et al.  Exploring single-cell data with deep multitasking neural networks , 2017, Nature Methods.

[123]  Yarden Katz,et al.  A single-cell survey of the small intestinal epithelium , 2017, Nature.

[124]  Michael J. T. Stubbington,et al.  The Human Cell Atlas: from vision to reality , 2017, Nature.

[125]  A. Riggs,et al.  SAIC: an iterative clustering approach for analysis of single cell RNA-seq data , 2017, BMC Genomics.

[126]  A. Condon,et al.  Interpretable dimensionality reduction of single cell transcriptome data with deep generative models , 2017, bioRxiv.

[127]  Il-Youp Kwak,et al.  DrImpute: imputing dropout events in single cell RNA sequencing data , 2017, bioRxiv.

[128]  A. Oshlack,et al.  Splatter: simulation of single-cell RNA sequencing data , 2017, bioRxiv.

[129]  Masahito Hosokawa,et al.  Massively parallel whole genome amplification for single-cell sequencing using droplet microfluidics , 2017, Scientific Reports.

[130]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[131]  G. Sanguinetti,et al.  scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells , 2018, Nature Communications.

[132]  Fabian J Theis,et al.  The Human Cell Atlas , 2017, bioRxiv.

[133]  M. Newton,et al.  SCnorm: robust normalization of single-cell RNA-seq data , 2017, Nature Methods.

[134]  O. Stegle,et al.  DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning , 2017, Genome Biology.

[135]  Kevin R. Moon,et al.  MAGIC: A diffusion-based imputation method reveals gene-gene interactions in single-cell RNA-sequencing data , 2017, bioRxiv.

[136]  Allon M. Klein,et al.  Single-cell barcoding and sequencing using droplet microfluidics , 2016, Nature Protocols.

[137]  Jun Zhao,et al.  Removal of batch effects using distribution‐matching residual networks , 2016, Bioinform..

[138]  Joshua W. K. Ho,et al.  CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data , 2016, Genome Biology.

[139]  Grace X. Y. Zheng,et al.  Massively parallel digital transcriptional profiling of single cells , 2016, Nature Communications.

[140]  Patrik L. Ståhl,et al.  Visualization and analysis of gene expression in tissue sections by spatial transcriptomics , 2016, Science.

[141]  Garry P Nolan,et al.  Visualization and cellular hierarchy inference of single-cell data using SPADE , 2016, Nature Protocols.

[142]  S. Linnarsson,et al.  Single-cell genomics: coming of age , 2016, Genome Biology.

[143]  J. Marioni,et al.  Pooling across cells to normalize single-cell RNA sequencing data with many zero counts , 2016, Genome Biology.

[144]  Debarka Sengupta,et al.  Fast, scalable and accurate differential expression analysis for single cells , 2016, bioRxiv.

[145]  Peng Jiang,et al.  Quality control of single-cell RNA-seq by SinQC , 2016, Bioinform..

[146]  W. Koh,et al.  Single-cell genome sequencing: current state of the science , 2016, Nature Reviews Genetics.

[147]  E. Pierson,et al.  ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis , 2015, Genome Biology.

[148]  A. Tanay,et al.  Single-cell epigenomics: techniques and emerging applications , 2015, Nature Reviews Genetics.

[149]  Fabian J. Theis,et al.  Diffusion maps for high-dimensional single-cell analysis of differentiation data , 2015, Bioinform..

[150]  Bo Ding,et al.  Normalization and noise reduction for single cell RNA-seq experiments , 2015, Bioinform..

[151]  P. Linsley,et al.  MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data , 2015, Genome Biology.

[152]  Catalina A. Vallejos,et al.  BASiCS: Bayesian Analysis of Single-Cell Sequencing Data , 2015, PLoS Comput. Biol..

[153]  Allon M. Klein,et al.  Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells , 2015, Cell.

[154]  Zoubin Ghahramani,et al.  Training generative neural networks via Maximum Mean Discrepancy optimization , 2015, UAI.

[155]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[156]  Fabian J Theis,et al.  Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells , 2015, Nature Biotechnology.

[157]  Thomas R. Gingeras,et al.  Comparison of the transcriptional landscapes between human and mouse tissues , 2014, Proceedings of the National Academy of Sciences.

[158]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[159]  P. Kharchenko,et al.  Bayesian approach to single-cell differential expression analysis , 2014, Nature Methods.

[160]  A. Bouchard-Côté,et al.  PyClone: statistical inference of clonal population structure in cancer , 2014, Nature Methods.

[161]  T. Furey ChIP – seq and beyond : new and improved methodologies to detect and characterize protein – DNA interactions , 2012 .

[162]  Fabian J. Theis,et al.  A novel approach for resolving differences in single-cell gene expression patterns from zygote to blastocyst , 2012, Bioinform..

[163]  A. Schmid,et al.  Single-cell analysis in biotechnology, systems biology, and biocatalysis. , 2012, Annual review of chemical and biomolecular engineering.

[164]  Yoshua Bengio,et al.  Convolutional networks for images, speech, and time series , 1998 .

[165]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[166]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[167]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[168]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[169]  OUP accepted manuscript , 2022, Briefings In Bioinformatics.

[170]  OUP accepted manuscript , 2022, Bioinformatics.

[171]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[172]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[173]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.