Optic flow segmentation as an ill-posed and maximum likelihood problem

Abstract It is shown how the segmentation problem encountered in the interpretation of visual motion, for example, may be formulated as an ill-posed problem using the notion of maximum likelihood to provide a general framework and guide the choice of regularizing constraints. The statistical consequences of the segmentation procedure proposed are examined and it is shown how the notion of maximum likelihood leads to a natural way of estimating parameters in the optimization function, especially the noise levels to be assigned. A minimum entropy regularization constraint is then used to ensure that the interpretation of the visual data elicits as much spatial structure as possible. It is shown by means of a ‘toy’ optic flow example how this is achieved when there are several parameter dimensions over which to segment.

[1]  Alan L. Yuille The Smoothest Velocity Field Token Matching Schemes , 1984, ECAI.

[2]  Allen M. Waxman,et al.  Surface Structure and Three-Dimensional Motion from Image Flow Kinematics , 1985 .

[3]  John Skilling,et al.  Data analysis: The maximum entropy method , 1984, Nature.

[4]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  S Ullman,et al.  Maximizing Rigidity: The Incremental Recovery of 3-D Structure from Rigid and Nonrigid Motion , 1984, Perception.

[6]  David W. Murray,et al.  3D Solutions to the Aperture Problem , 1984, ECAI.

[7]  D. M. Titterington,et al.  Comments on "Application of the Conditional Population-Mixture Model to Image Segmentation" , 1984, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Claude L. Fennema,et al.  Velocity determination in scenes containing several moving objects , 1979 .

[9]  Stanley L. Sclove,et al.  Application of the Conditional Population-Mixture Model to Image Segmentation , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  H. C. Longuet-Higgins,et al.  The interpretation of a moving retinal image , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[11]  B. R. Hunt,et al.  Digital Image Restoration , 1977 .

[12]  Thomas S. Huang,et al.  Estimating three-dimensional motion parameters of a rigid planar patch, II: Singular value decomposition , 1982 .

[13]  S. Ullman,et al.  The interpretation of visual motion , 1977 .

[14]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[15]  Thomas S. Huang,et al.  Estimating three-dimensional motion parameters of a rigid planar patch, III: Finite point correspondences and the three-view problem , 1984 .

[16]  Daryl T. Lawton,et al.  Processing translational motion sequences , 1983, Comput. Vis. Graph. Image Process..

[17]  Allen M. Waxman,et al.  Dynamic Stereo: Passive Ranging to Moving Objects from Relative Image Flows , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Thomas S. Huang,et al.  Estimating three-dimensional motion parameters of a rigid planar patch , 1981 .

[19]  G Ishai,et al.  Visual stability and space perception in monocular vision: mathematical model. , 1980, Journal of the Optical Society of America.

[20]  John Skilling,et al.  Maximum entropy method in image processing , 1984 .

[21]  William B. Thompson,et al.  Lower-Level Estimation and Interpretation of Visual Motion , 1981, Computer.

[22]  H C Longuet-Higgins,et al.  The visual ambiguity of a moving plane , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[23]  David W. Murray,et al.  Structure-from-motion algorithms for computer vision on an SIMD architecture , 1985 .

[24]  Allen M. Waxman,et al.  Contour Evolution, Neighborhood Deformation, and Global Image Flow: Planar Surfaces in Motion , 1985 .

[25]  W. B. Thompson,et al.  Combining motion and contrast for segmentation , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.