The Complexity of Nash Equilibria in Simple Stochastic Multiplayer Games

We analyse the computational complexity of finding Nash equilibria in simple stochastic multiplayer games. We show that restricting the search space to equilibria whose payoffs fall into a certain interval may lead to undecidability. In particular, we prove that the following problem is undecidable: Given a game $\mathcal G$, does there exist a pure-strategy Nash equilibrium of $\mathcal G$ where player 0 wins with probability 1. Moreover, this problem remains undecidable if it is restricted to strategies with (unbounded) finite memory. However, if mixed strategies are allowed, decidability remains an open problem. One way to obtain a provably decidable variant of the problem is to restrict the strategies to be positional or stationary. For the complexity of these two problems, we obtain a common lower bound of NP and upper bounds of NP and PSpace respectively.

[1]  Ian Stark,et al.  Free-Algebra Models for the pi-Calculus , 2005, FoSSaCS.

[2]  Anuj Dawar,et al.  Complexity Bounds for Regular Games , 2005, MFCS.

[3]  Tomás Brázdil,et al.  Stochastic games with branching-time winning objectives , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[4]  William D. Sudderth,et al.  Finitely additive stochastic games with Borel measurable payoffs , 1998, Int. J. Game Theory.

[5]  Luca de Alfaro,et al.  How to Specify and Verify the Long-Run Average Behavior of Probabilistic Systems , 1998, LICS.

[6]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[7]  Thomas A. Henzinger,et al.  Concurrent omega-regular games , 2000, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).

[8]  Xiaotie Deng,et al.  Settling the Complexity of Two-Player Nash Equilibrium , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[9]  Krishnendu Chatterjee,et al.  Stochastic Müller Games are PSPACE-Complete , 2007, FSTTCS.

[10]  Krishnendu Chatterjee,et al.  The Complexity of Stochastic Rabin and Streett Games' , 2005, ICALP.

[11]  Zohar Manna,et al.  Formal verification of probabilistic systems , 1997 .

[12]  Mihalis Yannakakis,et al.  Markov Decision Processes and Regular Events (Extended Abstract) , 1990, ICALP.

[13]  Vincent Conitzer,et al.  Complexity Results about Nash Equilibria , 2002, IJCAI.

[14]  Alex K. Simpson,et al.  Computational Adequacy in an Elementary Topos , 1998, CSL.

[15]  Thomas A. Henzinger,et al.  Concurrent reachability games , 2007, Theor. Comput. Sci..

[16]  Peter Lammich,et al.  Tree Automata , 2009, Arch. Formal Proofs.

[17]  Neil Immerman,et al.  Number of Quantifiers is Better Than Number of Tape Cells , 1981, J. Comput. Syst. Sci..

[18]  E. Allen Emerson,et al.  The Complexity of Tree Automata and Logics of Programs , 1999, SIAM J. Comput..

[19]  Annabelle McIver,et al.  Games, Probability and the Quantitative µ-Calculus qMµ , 2002, LPAR.

[20]  Klaus W. Wagner,et al.  Bounded Query Classes , 1990, SIAM J. Comput..

[21]  John F. Canny,et al.  Some algebraic and geometric computations in PSPACE , 1988, STOC '88.

[22]  Bengt Jonsson,et al.  A logic for reasoning about time and reliability , 1990, Formal Aspects of Computing.

[23]  J. Filar,et al.  Competitive Markov Decision Processes , 1996 .

[24]  Naveen Garg,et al.  FSTTCS 2006: Foundations of Software Technology and Theoretical Computer Science, 26th International Conference, Kolkata, India, December 13-15, 2006, Proceedings , 2006, FSTTCS.

[25]  Paul W. Goldberg,et al.  The complexity of computing a Nash equilibrium , 2006, STOC '06.

[26]  Florian Horn,et al.  Solving simple stochastic tail games , 2010, SODA '10.

[27]  Peter Bro Miltersen,et al.  The Complexity of Solving Stochastic Games on Graphs , 2009, ISAAC.

[28]  J. Nash Equilibrium Points in N-Person Games. , 1950, Proceedings of the National Academy of Sciences of the United States of America.

[29]  L. Shapley,et al.  Stochastic Games* , 1953, Proceedings of the National Academy of Sciences.

[30]  Michael Ummels,et al.  Stochastic multiplayer games: theory and algorithms , 2010 .

[31]  Michael Ummels,et al.  Rational Behaviour and Strategy Construction in Infinite Multiplayer Games , 2006, FSTTCS.

[32]  Marcin Jurdzinski,et al.  A Discrete Strategy Improvement Algorithm for Solving Parity Games , 2000, CAV.

[33]  Lane A. Hemachandra,et al.  The strong exponential hierarchy collapses , 1989 .

[34]  Samuel R. Buss,et al.  On Truth-Table Reducibility to SAT , 1991, Inf. Comput..

[35]  Florian Horn,et al.  Solving Simple Stochastic Games with Few Random Vertices , 2007, Logical Methods in Computer Science.

[36]  R. Aumann Survey of Repeated Games , 1981 .

[37]  Florian Horn,et al.  Explicit Muller Games are PTIME , 2008, FSTTCS.

[38]  Christel Baier,et al.  Controller Synthesis for Probabilistic Systems , 2004, IFIP TCS.

[39]  Kousha Etessami,et al.  On the Complexity of Nash Equilibria and Other Fixed Points (Extended Abstract) , 2010, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[40]  A Tarlecki,et al.  On Nash equilibria in stochastic games , 2004 .

[41]  Marcin Jurdziński,et al.  Deciding the Winner in Parity Games is in UP \cap co-Up , 1998, Inf. Process. Lett..

[42]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[43]  R. Bellman Dynamic programming. , 1957, Science.

[44]  Henrik Björklund,et al.  Combinatorial structure and randomized subexponential algorithms for infinite games , 2005, Theor. Comput. Sci..

[45]  Donald A. Martin,et al.  The determinacy of Blackwell games , 1998, Journal of Symbolic Logic.

[46]  Krishnendu Chatterjee,et al.  Games with secure equilibria , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[47]  Krishnendu Chatterjee,et al.  Simple Stochastic Parity Games , 2003, CSL.

[48]  Kousha Etessami,et al.  Multi-Objective Model Checking of Markov Decision Processes , 2007, Log. Methods Comput. Sci..

[49]  Ronald L. Graham,et al.  Some NP-complete geometric problems , 1976, STOC '76.

[50]  James Renegar On the computational complexity and geome-try of the first-order theory of the reals , 1992 .

[51]  Dominik Wojtczak,et al.  Decision Problems for Nash Equilibria in Stochastic Games , 2009, CSL.

[52]  Hugo Gimbert,et al.  Perfect Information Stochastic Priority Games , 2007, ICALP.

[53]  Anne Condon,et al.  The Complexity of Stochastic Games , 1992, Inf. Comput..

[54]  E. Emerson,et al.  Tree Automata, Mu-Calculus and Determinacy (Extended Abstract) , 1991, FOCS 1991.

[55]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part III: Quantifier Elimination , 1992, J. Symb. Comput..

[56]  Wieslaw Zielonka,et al.  Perfect-Information Stochastic Parity Games , 2004, FoSSaCS.

[57]  Ariel Rubinstein,et al.  A Course in Game Theory , 1995 .

[58]  Peter Bro Miltersen,et al.  2 The Task of a Numerical Analyst , 2022 .

[59]  Robin Milner,et al.  Theories for the Global Ubiquitous Computer , 2004, FoSSaCS.

[60]  Kousha Etessami,et al.  On the Complexity of Nash Equilibria and Other Fixed Points , 2010, SIAM J. Comput..

[61]  J. Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I , 1989 .

[62]  Michael Ummels,et al.  The Complexity of Nash Equilibria in Infinite Multiplayer Games , 2008, FoSSaCS.

[63]  Henrik Björklund,et al.  A Discrete Subexponential Algorithm for Parity Games , 2003, STACS.

[64]  Nils Klarlund,et al.  Progress measures, immediate determinacy, and a subset construction for tree automata , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.

[65]  Oliver Friedmann,et al.  An Exponential Lower Bound for the Parity Game Strategy Improvement Algorithm as We Know it , 2009, 2009 24th Annual IEEE Symposium on Logic In Computer Science.

[66]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I: Introduction. Preliminaries. The Geometry of Semi-Algebraic Sets. The Decision Problem for the Existential Theory of the Reals , 1992, J. Symb. Comput..

[67]  Sylvain Sorin,et al.  Stochastic Games and Applications , 2003 .

[68]  Wieslaw Zielonka,et al.  Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees , 1998, Theor. Comput. Sci..

[69]  Christel Baier,et al.  Principles of model checking , 2008 .

[70]  Robert McNaughton,et al.  Infinite Games Played on Finite Graphs , 1993, Ann. Pure Appl. Logic.

[71]  Uri Zwick,et al.  A deterministic subexponential algorithm for solving parity games , 2006, SODA '06.

[72]  Krishnendu Chatterjee,et al.  Quantitative stochastic parity games , 2004, SODA '04.

[73]  Elon Kohlberg,et al.  On Stochastic Games with Stationary Optimal Strategies , 1978, Math. Oper. Res..

[74]  Xiaotie Deng,et al.  Settling the complexity of computing two-player Nash equilibria , 2007, JACM.

[75]  Mihalis Yannakakis,et al.  The complexity of probabilistic verification , 1995, JACM.