Dynamic-Scale Model Construction From Range Imagery

The construction of a surface model from range data may be undertaken at any point in a continuum of scales that reflects the level of detail of the resulting model. This continuum relates the construction parameters to the scale of the model. We propose methods to dynamically reprocess range data at different scales. The construction result from a single scale is automatically evaluated, causing reconstruction at a different scale when user-defined criteria are not met. We demonstrate our methods in constructing a planar b-rep space envelope (a scene representation) for over 400 range images. The experiments demonstrate the ability to construct 100 percent valid models, with the scale of detail within specified requirements.

[1]  Martin Rutishauser,et al.  Merging range images of arbitrarily shaped objects , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Suchendra M. Bhandarkar,et al.  Integrating edge and surface information for range image segmentation , 1992, Pattern Recognit..

[3]  Andrew W. Fitzgibbon,et al.  An Experimental Comparison of Range Image Segmentation Algorithms , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[5]  Yiannis Aloimonos,et al.  Active vision , 2004, International Journal of Computer Vision.

[6]  Azriel Rosenfeld,et al.  Computer Vision , 1988, Adv. Comput..

[7]  Lawrence G. Roberts,et al.  Machine Perception of Three-Dimensional Solids , 1963, Outstanding Dissertations in the Computer Sciences.

[8]  Robert Bergevin,et al.  Registering Range Views of Multipart Objects , 1995, Comput. Vis. Image Underst..

[9]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[10]  Prasanna G. Mulgaonkar,et al.  Understanding Object Configurations using Range Images , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Gerhard Roth,et al.  An Efficient Volumetric Method for Building Closed Triangular Meshes from 3-D Image and Point Data , 1997, Graphics Interface.

[12]  Dmitry B. Goldgof,et al.  The space envelope representation for three-dimensional scenes , 1996 .

[13]  James C. Miller,et al.  Computer graphics principles and practice, second edition , 1992, Comput. Graph..

[14]  Gérard G. Medioni,et al.  Description of Complex Objects from Multiple Range Images Using an Inflating Balloon Model , 1995, Comput. Vis. Image Underst..

[15]  Martti Mäntylä,et al.  Introduction to Solid Modeling , 1988 .

[16]  M. Carter Computer graphics: Principles and practice , 1997 .

[17]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[18]  Harry F. Davis,et al.  Introduction to vector analysis , 1961 .

[19]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[20]  ARISTIDES A. G. REQUICHA,et al.  Representations for Rigid Solids: Theory, Methods, and Systems , 1980, CSUR.

[21]  Dmitry B. Goldgof,et al.  The Space Envelope: A Representation for 3D Scenes , 1998, Comput. Vis. Image Underst..

[22]  Zen Chen,et al.  Incremental model building of polyhedral objects using structured light , 1993, Pattern Recognit..

[23]  Martin D. Levine,et al.  Registering Multiview Range Data to Create 3D Computer Objects , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Katsushi Ikeuchi,et al.  Building 3-D models from unregistered range images , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[25]  Frank P. Ferrie,et al.  Darboux Frames, Snakes, and Super-Quadrics: Geometry from the Bottom Up , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Dmitry B. Goldgof,et al.  Extracting a Valid Boundary Representation from a Segmented Range Image , 1995, IEEE Trans. Pattern Anal. Mach. Intell..