How Inhibition Shapes Cortical Activity

[1]  S. Nelson,et al.  A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex , 2011, Neuron.

[2]  R. Yuste,et al.  Dense, Unspecific Connectivity of Neocortical Parvalbumin-Positive Interneurons: A Canonical Microcircuit for Inhibition? , 2011, The Journal of Neuroscience.

[3]  L. Looger,et al.  Chemical and Genetic Engineering of Selective Ion Channel–Ligand Interactions , 2011, Science.

[4]  Nicholas J. Priebe,et al.  Orientation Selectivity of Synaptic Input to Neurons in Mouse and Cat Primary Visual Cortex , 2011, The Journal of Neuroscience.

[5]  Li I. Zhang,et al.  Broad Inhibition Sharpens Orientation Selectivity by Expanding Input Dynamic Range in Mouse Simple Cells , 2011, Neuron.

[6]  G. Turrigiano Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. , 2011, Annual review of neuroscience.

[7]  Lief E. Fenno,et al.  The development and application of optogenetics. , 2011, Annual review of neuroscience.

[8]  B. Roth,et al.  Remote Control of Neuronal Signaling , 2011, Pharmacological Reviews.

[9]  M. Carandini,et al.  GABAA Inhibition Controls Response Gain in Visual Cortex , 2011, The Journal of Neuroscience.

[10]  R. Yuste,et al.  Dense Inhibitory Connectivity in Neocortex , 2011, Neuron.

[11]  Arthur W. Wetzel,et al.  Network anatomy and in vivo physiology of visual cortical neurons , 2011, Nature.

[12]  R. Reid,et al.  Broadly Tuned Response Properties of Diverse Inhibitory Neuron Subtypes in Mouse Visual Cortex , 2010, Neuron.

[13]  Nathan R. Wilson,et al.  Response Features of Parvalbumin-Expressing Interneurons Suggest Precise Roles for Subtypes of Inhibition in Visual Cortex , 2010, Neuron.

[14]  Jeffry S. Isaacson,et al.  From Dendrite to Soma: Dynamic Routing of Inhibition by Complementary Interneuron Microcircuits in Olfactory Cortex , 2010, Neuron.

[15]  H. Adesnik,et al.  Lateral competition for cortical space by layer-specific horizontal circuits , 2010, Nature.

[16]  I. Nelken,et al.  Functional organization and population dynamics in the mouse primary auditory cortex , 2010, Nature Neuroscience.

[17]  T. Tsumoto,et al.  Difference in Binocularity and Ocular Dominance Plasticity between GABAergic and Excitatory Cortical Neurons , 2010, The Journal of Neuroscience.

[18]  Shihab A. Shamma,et al.  Dichotomy of functional organization in the mouse auditory cortex , 2010, Nature Neuroscience.

[19]  Li I. Zhang,et al.  Intervening Inhibition Underlies Simple-Cell Receptive Field Structure in Visual Cortex , 2009, Nature Neuroscience.

[20]  Vreeswijk,et al.  Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory Activity , 2010 .

[21]  H. Adesnik,et al.  Input normalization by global feedforward inhibition expands cortical dynamic range , 2009, Nature Neuroscience.

[22]  Dan D. Stettler,et al.  Representations of Odor in the Piriform Cortex , 2009, Neuron.

[23]  T. Sejnowski,et al.  Cortical Enlightenment: Are Attentional Gamma Oscillations Driven by ING or PING? , 2009, Neuron.

[24]  R. Yuste,et al.  Depolarizing effect of neocortical chandelier neurons , 2022 .

[25]  Li I. Zhang,et al.  Visual Receptive Field Structure of Cortical Inhibitory Neurons Revealed by Two-Photon Imaging Guided Recording , 2009, The Journal of Neuroscience.

[26]  Wade G. Regehr,et al.  Linking Genetically Defined Neurons to Behavior through a Broadly Applicable Silencing Allele , 2009, Neuron.

[27]  Court Hull,et al.  Postsynaptic Mechanisms Govern the Differential Excitation of Cortical Neurons by Thalamic Inputs , 2009, The Journal of Neuroscience.

[28]  J. Isaacson,et al.  Odor Representations in Olfactory Cortex: “Sparse” Coding, Global Inhibition, and Oscillations , 2009, Neuron.

[29]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[30]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[31]  M. Scanziani,et al.  Instantaneous Modulation of Gamma Oscillation Frequency by Balancing Excitation with Inhibition , 2009, Neuron.

[32]  Claudio Rivera,et al.  Cation-Chloride Cotransporters and Neuronal Function , 2009, Neuron.

[33]  D. Buonomano,et al.  Differential Effects of Excitatory and Inhibitory Plasticity on Synaptically Driven Neuronal Input-Output Functions , 2009, Neuron.

[34]  D. Heeger,et al.  The Normalization Model of Attention , 2009, Neuron.

[35]  N. Schoppa,et al.  GABAergic Circuits Control Input–Spike Coupling in the Piriform Cortex , 2008, The Journal of Neuroscience.

[36]  Moritz Helmstaedter,et al.  Efficient Recruitment of Layer 2/3 Interneurons by Layer 4 Input in Single Columns of Rat Somatosensory Cortex , 2008, The Journal of Neuroscience.

[37]  W. M. Keck,et al.  Highly Selective Receptive Fields in Mouse Visual Cortex , 2008, The Journal of Neuroscience.

[38]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[39]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[40]  Michael Okun,et al.  Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities , 2008, Nature Neuroscience.

[41]  Guangying K. Wu,et al.  Lateral Sharpening of Cortical Frequency Tuning by Approximately Balanced Inhibition , 2008, Neuron.

[42]  Nicholas J. Priebe,et al.  Inhibition, Spike Threshold, and Stimulus Selectivity in Primary Visual Cortex , 2008, Neuron.

[43]  Lindsey L. Glickfeld,et al.  Complementary Modulation of Somatic Inhibition by Opioids and Cannabinoids , 2008, The Journal of Neuroscience.

[44]  R. Khazipov,et al.  GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. , 2007, Physiological reviews.

[45]  Jessica A. Cardin,et al.  Stimulus Feature Selectivity in Excitatory and Inhibitory Neurons in Primary Visual Cortex , 2007, The Journal of Neuroscience.

[46]  Corrigendum: Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex , 2007 .

[47]  Massimo Scanziani,et al.  Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex , 2007, Nature Neuroscience.

[48]  S. Cruikshank,et al.  Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex , 2007, Nature Neuroscience.

[49]  H. Markram,et al.  Disynaptic Inhibition between Neocortical Pyramidal Cells Mediated by Martinotti Cells , 2007, Neuron.

[50]  T. Tsumoto,et al.  GABAergic Neurons Are Less Selective to Stimulus Orientation than Excitatory Neurons in Layer II/III of Visual Cortex, as Revealed by In Vivo Functional Ca2+ Imaging in Transgenic Mice , 2007, The Journal of Neuroscience.

[51]  F. Dudek,et al.  Epileptogenesis in the dentate gyrus: a critical perspective. , 2007, Progress in brain research.

[52]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[53]  Guangying K. Wu,et al.  Nonmonotonic Synaptic Excitation and Imbalanced Inhibition Underlying Cortical Intensity Tuning , 2006, Neuron.

[54]  E. Callaway,et al.  Selective and Quickly Reversible Inactivation of Mammalian Neurons In Vivo Using the Drosophila Allatostatin Receptor , 2006, Neuron.

[55]  J. Maunsell,et al.  Effects of spatial attention on contrast response functions in macaque area V4. , 2006, Journal of neurophysiology.

[56]  Matthew E. Larkum,et al.  The GABAB1b Isoform Mediates Long-Lasting Inhibition of Dendritic Ca2+ Spikes in Layer 5 Somatosensory Pyramidal Neurons , 2006, Neuron.

[57]  Massimo Scanziani,et al.  Distinct timing in the activity of cannabinoid-sensitive and cannabinoid-insensitive basket cells , 2006, Nature Neuroscience.

[58]  D. McCormick,et al.  Neocortical Network Activity In Vivo Is Generated through a Dynamic Balance of Excitation and Inhibition , 2006, The Journal of Neuroscience.

[59]  G. Tamás,et al.  Excitatory Effect of GABAergic Axo-Axonic Cells in Cortical Microcircuits , 2006, Science.

[60]  D. Contreras,et al.  Balanced Excitation and Inhibition Determine Spike Timing during Frequency Adaptation , 2006, The Journal of Neuroscience.

[61]  P. Jonas,et al.  Shunting Inhibition Improves Robustness of Gamma Oscillations in Hippocampal Interneuron Networks by Homogenizing Firing Rates , 2006, Neuron.

[62]  E. Callaway,et al.  Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity , 2005, Nature Neuroscience.

[63]  Matteo Carandini,et al.  Somatosensory Integration Controlled by Dynamic Thalamocortical Feed-Forward Inhibition , 2005, Neuron.

[64]  D. Contreras,et al.  Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex , 2005, Nature Neuroscience.

[65]  D. McCormick,et al.  Inhibitory Postsynaptic Potentials Carry Synchronized Frequency Information in Active Cortical Networks , 2005, Neuron.

[66]  S. Hestrin,et al.  Electrical synapses define networks of neocortical GABAergic neurons , 2005, Trends in Neurosciences.

[67]  Michael Häusser,et al.  Feed‐forward inhibition shapes the spike output of cerebellar Purkinje cells , 2005, The Journal of physiology.

[68]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[69]  M. Sur,et al.  Invariant computations in local cortical networks with balanced excitation and inhibition , 2005, Nature Neuroscience.

[70]  P. Somogyi,et al.  Defined types of cortical interneurone structure space and spike timing in the hippocampus , 2005, The Journal of physiology.

[71]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[72]  Li I. Zhang,et al.  Tone-evoked excitatory and inhibitory synaptic conductances of primary auditory cortex neurons. , 2004, Journal of neurophysiology.

[73]  Diego Contreras,et al.  Synaptic Responses to Whisker Deflections in Rat Barrel Cortex as a Function of Cortical Layer and Stimulus Intensity , 2004, The Journal of Neuroscience.

[74]  Henry Markram,et al.  Interneuron Diversity series: Molecular and genetic tools to study GABAergic interneuron diversity and function , 2004, Trends in Neurosciences.

[75]  Roger D. Traub,et al.  Simulation of Gamma Rhythms in Networks of Interneurons and Pyramidal Cells , 1997, Journal of Computational Neuroscience.

[76]  Bard Ermentrout,et al.  When inhibition not excitation synchronizes neural firing , 1994, Journal of Computational Neuroscience.

[77]  R. Freeman,et al.  Orientation selectivity in the cat's striate cortex is invariant with stimulus contrast , 2004, Experimental Brain Research.

[78]  A. Zador,et al.  Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex , 2003, Nature.

[79]  Andrea Hasenstaub,et al.  Barrages of Synaptic Activity Control the Gain and Sensitivity of Cortical Neurons , 2003, The Journal of Neuroscience.

[80]  Raymond Dingledine,et al.  Interneuron Diversity series: Interneuron research – challenges and strategies , 2003, Trends in Neurosciences.

[81]  T. Harkany,et al.  Pyramidal cell communication within local networks in layer 2/3 of rat neocortex , 2003, The Journal of physiology.

[82]  Li I. Zhang,et al.  Topography and synaptic shaping of direction selectivity in primary auditory cortex , 2003, Nature.

[83]  R. Silver,et al.  Shunting Inhibition Modulates Neuronal Gain during Synaptic Excitation , 2003, Neuron.

[84]  Lyle J. Graham,et al.  Orientation and Direction Selectivity of Synaptic Inputs in Visual Cortical Neurons A Diversity of Combinations Produces Spike Tuning , 2003, Neuron.

[85]  G. Stuart,et al.  Excitatory Actions of GABA in the Cortex , 2003, Neuron.

[86]  H. Swadlow Fast-spike interneurons and feedforward inhibition in awake sensory neocortex. , 2003, Cerebral cortex.

[87]  K. Miller Understanding layer 4 of the cortical circuit: a model based on cat V1. , 2003, Cerebral cortex.

[88]  Harvey A Swadlow,et al.  Thalamocortical control of feed-forward inhibition in awake somatosensory 'barrel' cortex. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[89]  M. Frotscher,et al.  Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[90]  S. Hestrin,et al.  Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[91]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[92]  M. Carandini,et al.  Suppression without Inhibition in Visual Cortex , 2002, Neuron.

[93]  R Clay Reid,et al.  Laminar processing of stimulus orientation in cat visual cortex , 2002, The Journal of physiology.

[94]  Y. Kawaguchi,et al.  Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex , 2002, Journal of neurocytology.

[95]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[96]  M. Scanziani,et al.  Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition , 2001, Science.

[97]  C. Lüscher,et al.  Epilepsy, Hyperalgesia, Impaired Memory, and Loss of Pre- and Postsynaptic GABAB Responses in Mice Lacking GABAB(1) , 2001, Neuron.

[98]  S. Hestrin,et al.  Spike Transmission and Synchrony Detection in Networks of GABAergic Interneurons , 2001, Science.

[99]  R. Traub,et al.  Inhibition-based rhythms: experimental and mathematical observations on network dynamics. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[100]  B. Connors,et al.  A network of electrically coupled interneurons drives synchronized inhibition in neocortex , 2000, Nature Neuroscience.

[101]  M. Carandini,et al.  Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. , 2000, Journal of neurophysiology.

[102]  C. Gray,et al.  Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[103]  Richard J. Salvi,et al.  GABA-A antagonist causes dramatic expansion of tuning in primary auditory cortex. , 2000, Neuroreport.

[104]  M. Scanziani GABA Spillover Activates Postsynaptic GABAB Receptors to Control Rhythmic Hippocampal Activity , 2000, Neuron.

[105]  M. Carandini,et al.  Membrane Potential and Firing Rate in Cat Primary Visual Cortex , 2000, The Journal of Neuroscience.

[106]  S. Hestrin,et al.  A network of fast-spiking cells in the neocortex connected by electrical synapses , 1999, Nature.

[107]  B. Connors,et al.  Two networks of electrically coupled inhibitory neurons in neocortex , 1999, Nature.

[108]  A. Thomson,et al.  IPSPs elicited in CA1 pyramidal cells by putative basket cells in slices of adult rat hippocampus , 1999, The European journal of neuroscience.

[109]  P. Somogyi,et al.  Differentially Interconnected Networks of GABAergic Interneurons in the Visual Cortex of the Cat , 1998, The Journal of Neuroscience.

[110]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[111]  P. Somogyi,et al.  Salient features of synaptic organisation in the cerebral cortex 1 Published on the World Wide Web on 3 March 1998. 1 , 1998, Brain Research Reviews.

[112]  Y. Kubota,et al.  Neurochemical features and synaptic connections of large physiologically-identified GABAergic cells in the rat frontal cortex , 1998, Neuroscience.

[113]  Christian Lüscher,et al.  G Protein-Coupled Inwardly Rectifying K+ Channels (GIRKs) Mediate Postsynaptic but Not Presynaptic Transmitter Actions in Hippocampal Neurons , 1997, Neuron.

[114]  Christof Koch,et al.  Shunting Inhibition Does Not Have a Divisive Effect on Firing Rates , 1997, Neural Computation.

[115]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[116]  R. Traub,et al.  A mechanism for generation of long-range synchronous fast oscillations in the cortex , 1996, Nature.

[117]  G. Buzsáki,et al.  Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model , 1996, The Journal of Neuroscience.

[118]  D J Simons,et al.  Quantitative effects of GABA and bicuculline methiodide on receptive field properties of neurons in real and simulated whisker barrels. , 1996, Journal of neurophysiology.

[119]  P. Somogyi,et al.  Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons , 1995, Nature.

[120]  M. Carandini,et al.  Summation and division by neurons in primate visual cortex. , 1994, Science.

[121]  R. Nicoll,et al.  Local and diffuse synaptic actions of GABA in the hippocampus , 1993, Neuron.

[122]  N. Bowery GABAB receptor pharmacology. , 1993, Annual review of pharmacology and toxicology.

[123]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[124]  H. Swadlow Efferent neurons and suspected interneurons in binocular visual cortex of the awake rabbit: receptive fields and binocular properties. , 1988, Journal of neurophysiology.

[125]  Alan Peters,et al.  GABA immunoreactive neurons in rat visual cortex , 1987, The Journal of comparative neurology.

[126]  G. Buzsáki Feed-forward inhibition in the hippocampal formation , 1984, Progress in Neurobiology.

[127]  R. Andersen,et al.  The influence of the angle of gaze upon the excitability of the light- sensitive neurons of the posterior parietal cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[128]  A. Sillito Inhibitory mechanisms influencing complex cell orientation selectivity and their modification at high resting discharge levels. , 1979, The Journal of physiology.

[129]  C. Blakemore,et al.  Effects of bicuculline on functions of inhibition in visual cortex , 1974, Nature.

[130]  G. Brindley,et al.  THE UNDERSTANDING OF THE BRAIN , 1973 .

[131]  H. Longuet-Higgins Understanding the Brain , 1968, Nature.

[132]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[133]  H. K. Hartline,et al.  INHIBITION IN THE EYE OF LIMULUS , 1956, The Journal of general physiology.