When Nash Meets Stackelberg

Motivated by international energy trade between countries with profit-maximizing domestic producers, we analyze Nash games played among leaders of Stackelberg games (\NASP). We prove it is both $\Sigma^p_2$-hard to decide if the game has a pure-strategy (\PNE) or a mixed-strategy Nash equilibrium (\MNE). We then provide a finite algorithm that computes exact \MNEs for \NASPs when there is at least one, or returns a certificate if no \MNE exists. To enhance computational speed, we introduce an inner approximation hierarchy that increasingly grows the description of each Stackelberg leader feasible region. Furthermore, we extend the algorithmic framework to specifically retrieve a \PNE if one exists. Finally, we provide computational tests on a range of \NASPs instances inspired by international energy trades.

[1]  J. Pang,et al.  Strategic gaming analysis for electric power systems: an MPEC approach , 2000 .

[2]  Steven A. Gabriel,et al.  A Complementarity Model for the European Natural Gas Market , 2007 .

[3]  Tapas K. Das,et al.  Design of Pareto optimal CO2 cap-and-trade policies for deregulated electricity networks , 2014 .

[4]  Martine Labbé,et al.  Joint Design and Pricing on a Network , 2008, Oper. Res..

[5]  Andrea Lodi,et al.  Existence of Nash Equilibria on Integer Programming Games , 2017 .

[6]  Robert G. Jeroslow,et al.  The polynomial hierarchy and a simple model for competitive analysis , 1985, Math. Program..

[7]  E. Balas Disjunctive programming and a hierarchy of relaxations for discrete optimization problems , 1985 .

[8]  Ankur A. Kulkarni,et al.  An Existence Result for Hierarchical Stackelberg v/s Stackelberg Games , 2013, IEEE Transactions on Automatic Control.

[9]  Eitan Zemel,et al.  Nash and correlated equilibria: Some complexity considerations , 1989 .

[10]  Sriram Sankaranarayanan,et al.  Sensitivity and covariance in stochastic complementarity problems with an application to North American natural gas markets , 2016, Eur. J. Oper. Res..

[11]  Simone Sagratella,et al.  The noncooperative fixed charge transportation problem , 2020, Eur. J. Oper. Res..

[12]  Eric van Damme,et al.  Non-Cooperative Games , 2000 .

[13]  Ankur A. Kulkarni,et al.  A Shared-Constraint Approach to Multi-Leader Multi-Follower Games , 2012, 1206.2968.

[14]  Sriram Sankaranarayanan,et al.  The future of natural gas infrastructure development in the United states , 2018, Applied Energy.

[15]  Franziska Holz,et al.  The World Gas Model: A Multi-Period Mixed Complementarity Model for the Global Natural Gas Market , 2009 .

[16]  Hongyan Li,et al.  Competition under capacitated dynamic lot-sizing with capacity acquisition , 2011 .

[17]  Daniel Huppmann,et al.  North American natural gas model: Impact of cross-border trade with Mexico , 2016 .

[18]  D. Ralph,et al.  EPECs as models for electricity markets , 2006, 2006 IEEE PES Power Systems Conference and Exposition.

[19]  Sriram Sankaranarayanan,et al.  Mixed-integer bilevel representability , 2018, Math. Program..

[20]  Richard W. Cottle,et al.  Linear Complementarity Problem , 2009, Encyclopedia of Optimization.

[21]  Steven A. Gabriel,et al.  Solving discretely-constrained MPEC problems with applications in electric power markets , 2010 .

[22]  R. Rosenthal A class of games possessing pure-strategy Nash equilibria , 1973 .

[23]  Huifu Xu,et al.  A Stochastic Multiple-Leader Stackelberg Model: Analysis, Computation, and Application , 2009, Oper. Res..

[24]  Daniel Ralph,et al.  Using EPECs to Model Bilevel Games in Restructured Electricity Markets with Locational Prices , 2007, Oper. Res..

[25]  Sven Leyffer,et al.  Solving multi-leader–common-follower games , 2010, Optim. Methods Softw..

[26]  Gerhard J. Woeginger,et al.  Motion Planning with Pulley, Rope, and Baskets , 2013, Theory of Computing Systems.

[27]  Wilfred Candler,et al.  A linear two-level programming problem, , 1982, Comput. Oper. Res..

[28]  Andrea Lodi,et al.  Nash equilibria in the two-player kidney exchange game , 2017, Math. Program..

[29]  Christian von Hirschhausen,et al.  A strategic model of European gas supply (GASMOD) , 2008 .

[30]  Alberto Del Pia,et al.  Totally Unimodular Congestion Games , 2015, SODA.

[31]  W. Candler Multi-level programming and development policy , 1977 .

[32]  J. Bard Some properties of the bilevel programming problem , 1991 .

[33]  Oliver Stein,et al.  The noncooperative transportation problem and linear generalized Nash games , 2018, Eur. J. Oper. Res..

[34]  採編典藏組 Society for Industrial and Applied Mathematics(SIAM) , 2008 .

[35]  Martine Labbé Bilevel Programming and Price Setting Problems , 2006, OR.

[36]  Xiaotie Deng,et al.  Settling the Complexity of Two-Player Nash Equilibrium , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[37]  Hanif D. Sherali,et al.  A Multiple Leader Stackelberg Model and Analysis , 1984, Oper. Res..

[38]  Jonathan F. Bard,et al.  A bilevel programming approach to determining tax credits for biofuel production , 2000, Eur. J. Oper. Res..

[39]  Margarida Carvalho A note on the complexity of integer programming games , 2019, ArXiv.

[40]  J. Nash Equilibrium Points in N-Person Games. , 1950, Proceedings of the National Academy of Sciences of the United States of America.

[41]  J. Bard,et al.  Determining Tax Credits for Converting Nonfood Crops to Biofuels: An Application of Bilevel Programming , 1998 .