Active tracking of foveated feature clusters using affine structure

We describe a novel method of obtaining a fixation point on a moving object for a real-time gaze control system. The method makes use of a real-time implementation of a corner detector and tracker and reconstructs the image position of the desired fixation point from a cluster of corners detected on the object using the affine structure available from two or three views. The method is fast, reliable, viewpoint invariant, and insensitive to occlusion and/or individual corner dropout or reappearance. We compare two- and three-dimensional forms of the algorithm, present results for the method in use with a high performance head/eye platform, and compare the results with two naive fixation methods.

[1]  Michael Brady,et al.  Vision for mobile robots , 1992 .

[2]  Y. Bar-Shalom Tracking and data association , 1988 .

[3]  James J. Clark,et al.  Modal Control Of An Attentive Vision System , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[4]  J J Koenderink,et al.  Affine structure from motion. , 1991, Journal of the Optical Society of America. A, Optics and image science.

[5]  Yiannis Aloimonos,et al.  The role of fixation in visual motion analysis , 1993, International Journal of Computer Vision.

[6]  Takeo Kanade,et al.  A Paraperspective Factorization Method for Shape and Motion Recovery , 1994, ECCV.

[7]  Thomas J. Olson,et al.  Real-time vergence control for binocular robots , 1991, International Journal of Computer Vision.

[8]  Albert J. Wavering,et al.  TRICLOPS: a high-performance trinocular active vision system , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[9]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[10]  Andrew Blake,et al.  A framework for spatiotemporal control in the tracking of visual contours , 1993, International Journal of Computer Vision.

[11]  Ian D. Reid,et al.  Towards active exploration of static and dynamic scene geometry , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[12]  Hans-Hellmut Nagel,et al.  Displacement vectors derived from second-order intensity variations in image sequences , 1983, Comput. Vis. Graph. Image Process..

[13]  Ian D. Reid,et al.  Saccade and pursuit on an active head/eye platform , 1994, Image Vis. Comput..

[14]  Patrick Rives,et al.  A new approach to visual servoing in robotics , 1992, IEEE Trans. Robotics Autom..

[15]  Ronen Basri,et al.  Recognition by Linear Combinations of Models , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Takeo Kanade,et al.  Shape and motion from image streams under orthography: a factorization method , 1992, International Journal of Computer Vision.

[17]  D. Hubel Eye, brain, and vision , 1988 .

[18]  Claude Samson,et al.  Robot Control: The Task Function Approach , 1991 .

[19]  David W. Murray,et al.  Experiments in the machine interpretation of visual motion , 1990 .

[20]  Fumio Miyazaki,et al.  Manipulator Control by Visual Ser-voing with the Stereo Vision , 1993 .

[21]  P. Beardsley,et al.  Affine and Projective Structure from Motion , 1992 .

[22]  Gene H. Golub,et al.  Matrix computations , 1983 .

[23]  Ian D. Reid,et al.  Reactions to peripheral image motion using a head/eye platform , 1993, 1993 (4th) International Conference on Computer Vision.

[24]  D. A. Robinson,et al.  Why visuomotor systems don't like negative feedback and how they avoid it , 1990 .

[25]  Olivier D. Faugeras,et al.  What can be seen in three dimensions with an uncalibrated stereo rig , 1992, ECCV.

[26]  Andrew Zisserman,et al.  Motion From Point Matches Using Affine Epipolar Geometry , 1994, ECCV.

[27]  Long Quan,et al.  Towards structure from motion for linear features through reference points , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[28]  KanadeTakeo,et al.  Shape and motion from image streams under orthography , 1992 .

[29]  Daphna Weinshall,et al.  Linear and incremental acquisition of invariant shape models from image sequences , 1993, 1993 (4th) International Conference on Computer Vision.

[30]  Patrick Rives,et al.  A new approach to visual servoing in robotics , 1992, IEEE Trans. Robotics Autom..

[31]  David W. Murray,et al.  A modular head/eye platform for real-time reactive vision Mechatronics , 1993 .

[32]  Masayuki Inaba,et al.  Robot vision system with a correlation chip for real-time tracking, optical flow and depth map generation , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[33]  Jan-Olof Eklundh,et al.  Integrating primary ocular processes , 1992, Image Vis. Comput..

[34]  Christopher M. Brown,et al.  Real-time binocular smooth pursuit , 1993, International Journal of Computer Vision.

[35]  Ian D. Reid,et al.  Recursive Affine Structure and Motion from Image Sequences , 1994, ECCV.

[36]  Rachid Deriche,et al.  Accurate corner detection: an analytical study , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[37]  Ian D. Reid,et al.  Driving saccade to pursuit using image motion , 1995, International Journal of Computer Vision.

[38]  Larry S. Shapiro,et al.  A Matching and Tracking Strategy for Independently Moving Objects , 1992 .

[39]  Alston S. Householder,et al.  Matrix Approximation and Latent Roots , 1938 .

[40]  Andrew Zisserman,et al.  Geometric invariance in computer vision , 1992 .