Adaptive sampling for spatial prediction in environmental monitoring using wireless sensor networks: A review

The paper presents a review of the spatial prediction problem in the environmental monitoring applications by utilizing stationary and mobile robotic wireless sensor networks. First, the problem of selecting the best subset of stationary wireless sensors monitoring environmental phenomena in terms of sensing quality is surveyed. Then, predictive inference approaches and sampling algorithms for mobile sensing agents to optimally observe spatially physical processes in the existing works are analysed.

[1]  Nonparametric methods for spatial regression. An application to seismic events , 2012 .

[2]  Richard M. Murray,et al.  On a stochastic sensor selection algorithm with applications in sensor scheduling and sensor coverage , 2006, Autom..

[3]  Frank L. Lewis,et al.  Adaptive Sampling using Non-linear EKF with Mobile Robotic Wireless Sensor Nodes , 2006, 2006 9th International Conference on Control, Automation, Robotics and Vision.

[4]  Jorge Cortes,et al.  Distributed sampling of random fields with unknown covariance , 2009, 2009 American Control Conference.

[5]  Linh V. Nguyen,et al.  Spatial Sensor Selection via Gaussian Markov Random Fields , 2016, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[6]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .

[7]  Fabio Tozeto Ramos,et al.  Bayesian optimisation for Intelligent Environmental Monitoring , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Jianping Pan,et al.  An On-Demand Data Collection Scheme for Wireless Sensor Networks with Mobile Elements , 2011, 2011 IEEE International Conference on Communications (ICC).

[9]  Jongeun Choi,et al.  Mobile Sensor Network Navigation Using Gaussian Processes With Truncated Observations , 2011, IEEE Transactions on Robotics.

[10]  W. Welch Branch-and-Bound Search for Experimental Designs Based on D Optimality and Other Criteria , 1982 .

[11]  Jongeun Choi,et al.  Efficient Bayesian spatial prediction with mobile sensor networks using Gaussian Markov random fields , 2012 .

[12]  Gaurav S. Sukhatme,et al.  Optimizing waypoints for monitoring spatiotemporal phenomena , 2013, Int. J. Robotics Res..

[13]  Gamini Dissanayake,et al.  Locational optimization based sensor placement for monitoring Gaussian processes modeled spatial phenomena , 2013, 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA).

[14]  Po-Wen Cheng,et al.  Design and Implementation of Mobile Robot for Nodes Replacement in Wireless Sensor Networks , 2008, J. Inf. Sci. Eng..

[15]  Mahdi Jadaliha,et al.  Fully Bayesian simultaneous localization and spatial prediction using Gaussian Markov random fields (GMRFs) , 2013, 2013 American Control Conference.

[16]  Liam Paninski,et al.  Asymptotic Theory of Information-Theoretic Experimental Design , 2005, Neural Computation.

[17]  F. Pukelsheim Optimal Design of Experiments , 1993 .

[18]  William A. Sethares,et al.  Sensor placement for on-orbit modal identification via a genetic algorithm , 1993 .

[19]  P. Müller,et al.  Optimal Bayesian Design by Inhomogeneous Markov Chain Simulation , 2004 .

[20]  Ramesh Govindan,et al.  Utility based sensor selection , 2006, IPSN.

[21]  Gamini Dissanayake,et al.  Mobile robotic wireless sensor networks for efficient spatial prediction , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[22]  Gianluca Dini,et al.  An Algorithm for Reconnecting Wireless Sensor Network Partitions , 2008, EWSN.

[23]  Gamini Dissanayake,et al.  Sensor Selection Based Routing for Monitoring Gaussian Processes M odeled Spatial Phenomena , 2012 .

[24]  T. Kneib,et al.  Categorical structured additive regression for assessing habitat suitability in the spatial distribution of mussel seed abundance , 2012 .

[25]  Thomas C. Henderson,et al.  Leveraging RSSI for Robotic Repair of Disconnected Wireless Sensor Networks , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[26]  Sonia Martínez,et al.  Coverage control for mobile sensing networks , 2002, IEEE Transactions on Robotics and Automation.

[27]  Ying Zhang,et al.  Mobile Sensor Networks Self Localization based on Multi-dimensional Scaling , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[28]  Tzung-Shi Chen,et al.  On Data Collection Using Mobile Robot in Wireless Sensor Networks , 2011, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[29]  Frank L. Lewis,et al.  EKF-based Adaptive Sampling with Mobile Robotic Sensor Nodes , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[30]  Maurice Queyranne,et al.  An Exact Algorithm for Maximum Entropy Sampling , 1995, Oper. Res..

[31]  G. Dissanayake,et al.  Simulated annealing based approach for near-optimal sensor selection in Gaussian Processes , 2012, 2012 International Conference on Control, Automation and Information Sciences (ICCAIS).

[32]  Toshihisa Tanaka,et al.  Nested performance bounds and approximate solutions for the sensor placement problem , 2014, APSIPA Transactions on Signal and Information Processing.

[33]  Naomi Ehrich Leonard,et al.  Collective Motion, Sensor Networks, and Ocean Sampling , 2007, Proceedings of the IEEE.

[34]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[35]  FARHAD GHASSEMI,et al.  Separable Approximation for Solving the Sensor Subset Selection Problem , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[36]  Gamini Dissanayake,et al.  Spatially-distributed prediction with mobile robotic wireless sensor networks , 2014, 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV).

[37]  Jongeun Choi,et al.  Sequential Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks , 2012, IEEE Transactions on Automatic Control.

[38]  Jiming Chen,et al.  Cooperative and Active Sensing in Mobile Sensor Networks for Scalar Field Mapping , 2015, IEEE Trans. Syst. Man Cybern. Syst..

[39]  Linh V. Nguyen,et al.  Soil organic matter estimation in precision agriculture using wireless sensor networks , 2016, 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV).

[40]  Waltenegus Dargie,et al.  A Survey on Mobility and Mobility-Aware MAC Protocols in Wireless Sensor Networks , 2013, IEEE Communications Surveys & Tutorials.

[41]  Stephen P. Boyd,et al.  Sensor Selection via Convex Optimization , 2009, IEEE Transactions on Signal Processing.

[42]  Linh Viet Nguyen,et al.  Efficient Approach for Maximizing Lifespan in Wireless Sensor Networks by Using Mobile Sinks , 2017 .

[43]  Gamini Dissanayake,et al.  Adaptive Placement for Mobile Sensors in Spatial Prediction Under Locational Errors , 2017, IEEE Sensors Journal.

[44]  Ivan Stojmenovic,et al.  TOPICS IN AD HOC AND SENSOR NETWORKS , 2022 .

[45]  M. Naeem,et al.  Swarm Intelligence for Sensor Selection Problems , 2012, IEEE Sensors Journal.

[46]  Jorge Cortés,et al.  A cooperative deployment strategy for optimal sampling in spatiotemporal estimation , 2008, 2008 47th IEEE Conference on Decision and Control.

[47]  Andreas Krause,et al.  Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies , 2008, J. Mach. Learn. Res..

[48]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[49]  Y. Charlie Hu,et al.  Replacing Failed Sensor Nodes by Mobile Robots , 2006, 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW'06).

[50]  Jorge Cortés,et al.  Distributed Kriged Kalman Filter for Spatial Estimation , 2009, IEEE Transactions on Automatic Control.

[51]  P. Diggle,et al.  Model‐based geostatistics , 2007 .

[52]  Andreas Krause,et al.  Near-optimal sensor placements in Gaussian processes , 2005, ICML.

[53]  Han-Lim Choi,et al.  An outer-approximation approach for information-maximizing sensor selection , 2012, Optimization Letters.

[54]  M. Stein,et al.  Spatial sampling design for prediction with estimated parameters , 2006 .

[55]  Alan J. Miller,et al.  A review of some exchange algorithms for constructing discrete D-optimal designs , 1992 .

[56]  S. Crary,et al.  Bayesian Optimal Design Of Experiments For Sensor Calibration , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[57]  B. Suman,et al.  A survey of simulated annealing as a tool for single and multiobjective optimization , 2006, J. Oper. Res. Soc..

[58]  Alexander J. Smola,et al.  Sparse Greedy Gaussian Process Regression , 2000, NIPS.

[59]  Kian Hsiang Low,et al.  Multi-robot active sensing of non-stationary gaussian process-based environmental phenomena , 2014, AAMAS.

[60]  Sajal K. Das,et al.  Data Collection in Wireless Sensor Networks with Mobile Elements: A Survey , 2011, TOSN.

[61]  Joonho Lee,et al.  Swarm intelligence for achieving the global maximum using spatio-temporal Gaussian processes , 2008, 2008 American Control Conference.

[62]  Matthias W. Seeger,et al.  Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.

[63]  Songhwai Oh,et al.  Efficient environmental monitoring using cost-aware path planning , 2013, 2013 13th International Conference on Control, Automation and Systems (ICCAS 2013).

[64]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[65]  W. F. Caselton,et al.  Optimal monitoring network designs , 1984 .

[66]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[67]  H. Wynn,et al.  Maximum entropy sampling and optimal Bayesian experimental design , 2000 .

[68]  James V. Zidek,et al.  Statistical Analysis of Environmental Space-Time Processes , 2006 .

[69]  Noel Cressie,et al.  Conditional-mean least-squares fitting of Gaussian Markov random fields to Gaussian fields , 2008, Comput. Stat. Data Anal..

[70]  Waylon Brunette,et al.  Data MULEs: modeling a three-tier architecture for sparse sensor networks , 2003, Proceedings of the First IEEE International Workshop on Sensor Network Protocols and Applications, 2003..

[71]  Jongeun Choi,et al.  Adaptive Sampling for Learning Gaussian Processes Using Mobile Sensor Networks , 2011, Sensors.

[72]  Guoqiang Hu,et al.  Spatio-temporal environmental monitoring for smart buildings , 2017, 2017 13th IEEE International Conference on Control & Automation (ICCA).

[73]  Jongeun Choi,et al.  Distributed learning in mobile sensor networks using cross validation , 2010, 49th IEEE Conference on Decision and Control (CDC).

[74]  George J. Pappas,et al.  On trajectory optimization for active sensing in Gaussian process models , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[75]  Andreas Horn,et al.  Cooperative n-boundary tracking in large scale environments , 2012, 2012 IEEE 9th International Conference on Mobile Ad-Hoc and Sensor Systems (MASS 2012).

[76]  Gamini Dissanayake,et al.  Information-Driven Adaptive Sampling Strategy for Mobile Robotic Wireless Sensor Network , 2016, IEEE Transactions on Control Systems Technology.

[77]  Fumin Zhang,et al.  Robust Cooperative Exploration With a Switching Strategy , 2012, IEEE Transactions on Robotics.

[78]  Guoqiang Hu,et al.  Efficient spatio-temporal sensor deployments: A smart building application , 2017, 2017 13th IEEE International Conference on Control & Automation (ICCA).

[79]  H. Rue,et al.  Fitting Gaussian Markov Random Fields to Gaussian Fields , 2002 .

[80]  Jindong Tan,et al.  Adaptive sampling using mobile sensor networks , 2012, 2012 IEEE International Conference on Robotics and Automation.

[81]  Mahdi Jadaliha,et al.  Efficient spatial prediction using gaussian markov random fields under uncertain localization , 2012 .

[82]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[83]  Andreas Terzis,et al.  Using mobile robots to harvest data from sensor fields , 2009, IEEE Wireless Communications.

[84]  Philip K. McKinley,et al.  Energy Optimization under Informed Mobility , 2006, IEEE Transactions on Parallel and Distributed Systems.

[85]  Jaeho Kim,et al.  Deployment Support for Sensor Networks in Indoor Climate Monitoring , 2013, Int. J. Distributed Sens. Networks.

[86]  Jorge Cortés,et al.  Cooperative adaptive sampling via approximate entropy maximization , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[87]  Neil D. Lawrence,et al.  Fast Sparse Gaussian Process Methods: The Informative Vector Machine , 2002, NIPS.

[88]  Carlos H. Caicedo-Nunez,et al.  Symmetric coverage of dynamic mapping error for mobile sensor networks , 2011, Proceedings of the 2011 American Control Conference.

[89]  Hongke Zhang,et al.  Efficient Data Collection in Wireless Sensor Networks with Path-Constrained Mobile Sinks , 2011, IEEE Trans. Mob. Comput..

[90]  Ola Hössjer,et al.  Fast kriging of large data sets with Gaussian Markov random fields , 2008, Comput. Stat. Data Anal..

[91]  Mahdi Jadaliha,et al.  Environmental Monitoring Using Autonomous Aquatic Robots: Sampling Algorithms and Experiments , 2013, IEEE Transactions on Control Systems Technology.

[92]  Sonia Martínez,et al.  Distributed Interpolation Schemes for Field Estimation by Mobile Sensor Networks , 2010, IEEE Transactions on Control Systems Technology.

[93]  Sarath Kodagoda,et al.  Mutual information based data selection in Gaussian processes for people tracking , 2012 .

[94]  Jongeun Choi,et al.  Spatial prediction with mobile sensor networks using Gaussian processes with built-in Gaussian Markov random fields , 2012, Autom..