Drivers and modulators from push-pull and balanced synaptic input.

[1]  Paul Creston Principles of rhythm , 1964 .

[2]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[3]  A. C. Webb,et al.  The spontaneous activity of neurones in the cat’s cerebral cortex , 1976, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[4]  J. Hammersley,et al.  Diffusion Processes and Related Topics in Biology , 1977 .

[5]  L. Ricciardi,et al.  Diffusion Processes and Related Topics in Biology. , 1978 .

[6]  R. Andersen,et al.  The influence of the angle of gaze upon the excitability of the light- sensitive neurons of the posterior parietal cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[8]  R. M. Siegel,et al.  Encoding of spatial location by posterior parietal neurons. , 1985, Science.

[9]  J K Hoober,et al.  Synthesis of Chlorophyllide b from Protochlorophyllide in Chlamydomonas reinhardtii y-1 , 1985, Science.

[10]  Henry C. Tuckwell,et al.  Introduction to theoretical neurobiology , 1988 .

[11]  Richard A. Andersen,et al.  A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons , 1988, Nature.

[12]  Bartlett W. Mel,et al.  Sigma-Pi Learning: On Radial Basis Functions and Cortical Associative Learning , 1989, NIPS.

[13]  C. Koch,et al.  Synaptic background activity influences spatiotemporal integration in single pyramidal cells. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Idan Segev,et al.  The Impact of Parallel Fiber Background Activity on the Cable Properties of Cerebellar Purkinje Cells , 1992, Neural Computation.

[15]  T. Poggio,et al.  Multiplying with synapses and neurons , 1992 .

[16]  Christof Koch,et al.  Cortical Cells Should Fire Regularly, But Do Not , 1999, Neural Computation.

[17]  Joel L. Davis,et al.  Single neuron computation , 1992 .

[18]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[19]  Terrence J. Sejnowski,et al.  Egocentric Spatial Representation in Early Vision , 1993 .

[20]  Bartlett W. Mel Synaptic integration in an excitable dendritic tree. , 1993, Journal of neurophysiology.

[21]  Frank Moss,et al.  Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance , 1993, Nature.

[22]  T. Sejnowski,et al.  Egocentric Spaw Representation in Early Vision , 1993, Journal of Cognitive Neuroscience.

[23]  D. Heeger Modeling simple-cell direction selectivity with normalized, half-squared, linear operators. , 1993, Journal of neurophysiology.

[24]  J. Malpeli,et al.  Responses of neurons in primary visual cortex are modulated by eye position. , 1993, Journal of neurophysiology.

[25]  William R. Softky,et al.  The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  J. Midtgaard,et al.  Synaptic integration in a model of cerebellar granule cells. , 1994, Journal of neurophysiology.

[27]  T. Sejnowski,et al.  A neural model of the cortical representation of egocentric distance. , 1994, Cerebral cortex.

[28]  Michael N. Shadlen,et al.  Noise, neural codes and cortical organization , 1994, Current Opinion in Neurobiology.

[29]  M. Carandini,et al.  Summation and division by neurons in primate visual cortex. , 1994, Science.

[30]  Terrence J. Sejnowski,et al.  RAPID STATE SWITCHING IN BALANCED CORTICAL NETWORK MODELS , 1995 .

[31]  L F Abbott,et al.  Transfer of coded information from sensory to motor networks , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  L. Abbott,et al.  A model of multiplicative neural responses in parietal cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[33]  E. Marder,et al.  Principles of rhythmic motor pattern generation. , 1996, Physiological reviews.

[34]  William R. Softky,et al.  Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. , 1996, Journal of neurophysiology.

[35]  John P. Miller,et al.  Broadband neural encoding in the cricket cereal sensory system enhanced by stochastic resonance , 1996, Nature.

[36]  D. V. van Essen,et al.  Responses in area V4 depend on the spatial relationship between stimulus and attention. , 1996, Journal of neurophysiology.

[37]  Thomas T. Imhoff,et al.  Noise-enhanced information transmission in rat SA1 cutaneous mechanoreceptors via aperiodic stochastic resonance. , 1996, Journal of neurophysiology.

[38]  H. Sompolinsky,et al.  Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory Activity , 1996, Science.

[39]  Kenneth D. Miller,et al.  Physiological Gain Leads to High ISI Variability in a Simple Model of a Cortical Regular Spiking Cell , 1997, Neural Computation.

[40]  L. Abbott,et al.  Invariant visual responses from attentional gain fields. , 1997, Journal of neurophysiology.

[41]  J. Movshon,et al.  Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex , 1997, The Journal of Neuroscience.

[42]  D. V. van Essen,et al.  Spatial Attention Effects in Macaque Area V4 , 1997, The Journal of Neuroscience.

[43]  Christof Koch,et al.  Shunting Inhibition Does Not Have a Divisive Effect on Firing Rates , 1997, Neural Computation.

[44]  T. Sejnowski,et al.  Spatial Transformations in the Parietal Cortex Using Basis Functions , 1997, Journal of Cognitive Neuroscience.

[45]  D. Heeger,et al.  Contrast normalization and a linear model for the directional selectivity of simple cells in cat striate cortex , 1997, Visual Neuroscience.

[46]  R. Reid,et al.  Synaptic Integration in Striate Cortical Simple Cells , 1998, The Journal of Neuroscience.

[47]  Christof Koch,et al.  Biophysics of Computation: Information Processing in Single Neurons (Computational Neuroscience Series) , 1998 .

[48]  R. Guillery,et al.  On the actions that one nerve cell can have on another: distinguishing "drivers" from "modulators". , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[49]  C. Stevens,et al.  Input synchrony and the irregular firing of cortical neurons , 1998, Nature Neuroscience.

[50]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[51]  Eero P. Simoncelli,et al.  Modeling Surround Suppression in V1 Neurons with a Statistically Derived Normalization Model , 1998, NIPS.

[52]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[53]  Stefan Treue,et al.  Feature-based attention influences motion processing gain in macaque visual cortex , 1999, Nature.

[54]  G. Laurent,et al.  Computation of Object Approach by a Wide-Field, Motion-Sensitive Neuron , 1999, The Journal of Neuroscience.

[55]  Carrie J. McAdams,et al.  Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 , 1999, The Journal of Neuroscience.

[56]  Carrie J. McAdams,et al.  Effects of Attention on the Reliability of Individual Neurons in Monkey Visual Cortex , 1999, Neuron.

[57]  A. Destexhe,et al.  Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. , 1999, Journal of neurophysiology.

[58]  D Nozaki,et al.  Mechanism of stochastic resonance enhancement in neuronal models driven by 1/f noise. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[59]  S. Celebrini,et al.  Gaze direction controls response gain in primary visual-cortex neurons , 1999, Nature.

[60]  Richard Hans Robert Hahnloser,et al.  Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit , 2000, Nature.

[61]  D. Ferster,et al.  The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. , 2000, Science.

[62]  Eero P. Simoncelli,et al.  Natural Sound Statistics and Divisive Normalization in the Auditory System , 2000, NIPS.

[63]  A. Destexhe,et al.  Synaptic background activity enhances the responsiveness of neocortical pyramidal neurons. , 2000, Journal of neurophysiology.

[64]  M. Carandini,et al.  Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. , 2000, Journal of neurophysiology.

[65]  Richard Hans Robert Hahnloser,et al.  correction: Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit , 2000, Nature.

[66]  T. Sejnowski,et al.  Comparison of current-driven and conductance-driven neocortical model neurons with Hodgkin-Huxley voltage-gated channels. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[67]  Emilio Salinas,et al.  Gain Modulation A Major Computational Principle of the Central Nervous System , 2000, Neuron.

[68]  Brent Doiron,et al.  Subtractive and Divisive Inhibition: Effect of Voltage-Dependent Inhibitory Conductances and Noise , 2001, Neural Computation.

[69]  Eero P. Simoncelli,et al.  Natural signal statistics and sensory gain control , 2001, Nature Neuroscience.

[70]  T. Sejnowski,et al.  Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons , 2001, Neuroscience.

[71]  M Konishi,et al.  Auditory Spatial Receptive Fields Created by Multiplication , 2001, Science.

[72]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[73]  R. Silver,et al.  Shunting Inhibition Modulates Neuronal Gain during Synaptic Excitation , 2003, Neuron.

[74]  Kenneth D Miller,et al.  Multiplicative Gain Changes Are Induced by Excitation or Inhibition Alone , 2003, The Journal of Neuroscience.

[75]  Shunting inhibition and mGluR-mediated disinhibition modulate the gain of granule cell input-output relationships during synaptic excitation in rat cerebellum , 2003 .

[76]  S. Prescott,et al.  Gain control of firing rate by shunting inhibition: Roles of synaptic noise and dendritic saturation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[77]  David McLaughlin,et al.  States of High Conductance in a Large-Scale Model of the Visual Cortex , 2002, Journal of Computational Neuroscience.

[78]  Gary D. Bernard,et al.  A proposed mechanism for multiplication of neural signals , 1976, Biological Cybernetics.

[79]  A. Dean The variability of discharge of simple cells in the cat striate cortex , 2004, Experimental Brain Research.

[80]  A. Destexhe,et al.  Synaptic background activity controls spike transfer from thalamus to cortex , 2005, Nature Neuroscience.

[81]  B. Batlogg,et al.  Auditory Spatial Receptive Fields Created by Multiplication , 2022 .