Beta seasonal autoregressive moving average models

ABSTRACT In this paper, we introduce the class of beta seasonal autoregressive moving average (βSARMA) models for modelling and forecasting time series data that assume values in the standard unit interval. It generalizes the class of beta autoregressive moving average models [Rocha AV and Cribari-Neto F. Beta autoregressive moving average models. Test. 2009;18(3):529–545] by incorporating seasonal dynamics to the model dynamic structure. Besides introducing the new class of models, we develop parameter estimation, hypothesis testing inference, and diagnostic analysis tools. We also discuss out-of-sample forecasting. In particular, we provide closed-form expressions for the conditional score vector and for the conditional Fisher information matrix. We also evaluate the finite sample performances of conditional maximum likelihood estimators and white noise tests using Monte Carlo simulations. An empirical application is presented and discussed.

[1]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[2]  Fotios Petropoulos,et al.  forecast: Forecasting functions for time series and linear models , 2018 .

[3]  Francisco Cribari-Neto,et al.  Erratum to: Beta autoregressive moving average models , 2017 .

[4]  M. Bourguignon,et al.  A Poisson INAR(1) process with a seasonal structure , 2016 .

[5]  Rong Chen,et al.  Generalized ARMA Models with Martingale Difference Errors , 2015 .

[6]  Jorge I. Figueroa-Zúñiga,et al.  Partially linear beta regression model with autoregressive errors , 2015 .

[7]  Francisco Cribari-Neto,et al.  Bootstrap-based model selection criteria for beta regressions , 2014, 1405.4525.

[8]  C. Varin,et al.  Beta regression for time series analysis of bounded data, with application to Canada Google Flu Trends. , 2014, 1404.3533.

[9]  S. Shimakura,et al.  Bayesian analysis for a class of beta mixed models , 2014, 1401.2957.

[10]  George Athanasopoulos,et al.  Forecasting: principles and practice , 2013 .

[11]  Priyanie H. Amerasinghe,et al.  Generalized Seasonal Autoregressive Integrated Moving Average Models for Count Data with Application to Malaria Time Series with Low Case Numbers , 2013, PloS one.

[12]  C. Viboud,et al.  Environmental Predictors of Seasonal Influenza Epidemics across Temperate and Tropical Climates , 2013, PLoS pathogens.

[13]  Kumar Muthuraman,et al.  Modeling and forecasting mortality rates , 2013 .

[14]  A. Nastic,et al.  A mixed INAR(p) model , 2012 .

[15]  Douglas C. Montgomery,et al.  Generalized Linear Models: With Applications in Engineering and the Sciences: Second Edition , 2012 .

[16]  David Moriña,et al.  A statistical model for hospital admissions caused by seasonal diseases , 2011, Statistics in medicine.

[17]  Helio S. Migon,et al.  Dynamic Bayesian beta models , 2011, Comput. Stat. Data Anal..

[18]  R. Casarin,et al.  Bayesian Model Selection for Beta Autoregressive Processes , 2010, 1008.0121.

[19]  Magda Monteiro,et al.  Integer-valued autoregressive processes with periodic structure , 2010 .

[20]  Andréa V. Rocha,et al.  Beta autoregressive moving average models , 2009 .

[21]  Artur J. Lemonte,et al.  Some restriction tests in a new class of regression models for proportions , 2009, Comput. Stat. Data Anal..

[22]  Pascal Bondon,et al.  Estimation of autoregressive models with epsilon-skew-normal innovations , 2009, J. Multivar. Anal..

[23]  Wagner Barreto-Souza,et al.  Improved estimators for a general class of beta regression models , 2008, Comput. Stat. Data Anal..

[24]  Rob J Hyndman,et al.  Forecasting with Exponential Smoothing: The State Space Approach , 2008 .

[25]  George E. P. Box,et al.  Time Series Analysis: Box/Time Series Analysis , 2008 .

[26]  Francisco Cribari-Neto,et al.  Influence diagnostics in beta regression , 2008, Comput. Stat. Data Anal..

[27]  S. Ferrari,et al.  On beta regression residuals , 2008 .

[28]  Ming De Chuang,et al.  Order series method for forecasting non-Gaussian time series , 2007 .

[29]  Roman Liesenfeld,et al.  Time series of count data: modeling, estimation and diagnostics , 2006, Comput. Stat. Data Anal..

[30]  N. Grassly,et al.  Seasonal infectious disease epidemiology , 2006, Proceedings of the Royal Society B: Biological Sciences.

[31]  K. Ponnambalam,et al.  Grain yield reliability analysis with crop water demand uncertainty , 2006 .

[32]  Moti L. Tiku,et al.  Time series AR(1) model for short-tailed distributions , 2005 .

[33]  Benjamin Kedem,et al.  Regression Models for Time Series Analysis: Kedem/Time Series Analysis , 2005 .

[34]  S. Ferrari,et al.  Beta Regression for Modelling Rates and Proportions , 2004 .

[35]  R. Lund,et al.  First-order seasonal autoregressive processes with periodically varying parameters , 2004 .

[36]  Benjamin Kedem,et al.  Partial Likelihood Inference For Time Series Following Generalized Linear Models , 2004 .

[37]  B. McCullough,et al.  Regression analysis of variates observed on (0, 1): percentages, proportions and fractions , 2003 .

[38]  W. Press,et al.  Numerical Recipes in C++: The Art of Scientific Computing (2nd edn)1 Numerical Recipes Example Book (C++) (2nd edn)2 Numerical Recipes Multi-Language Code CD ROM with LINUX or UNIX Single-Screen License Revised Version3 , 2003 .

[39]  R. Rigby,et al.  Generalized Autoregressive Moving Average Models , 2003 .

[40]  E. Ziegel Generalized Linear Models , 2002, Technometrics.

[41]  Y. Pawitan In all likelihood : statistical modelling and inference using likelihood , 2002 .

[42]  R. H. Myers Generalized Linear Models: With Applications in Engineering and the Sciences , 2001 .

[43]  S. Dowell Seasonal variation in host susceptibility and cycles of certain infectious diseases. , 2001, Emerging infectious diseases.

[44]  M. Tiku,et al.  Time Series Models in Non‐Normal Situations: Symmetric Innovations , 2000 .

[45]  Robert Lund,et al.  Recursive Prediction and Likelihood Evaluation for Periodic ARMA Models , 2000 .

[46]  Wei Pan,et al.  Bootstrapping Likelihood for Model Selection with Small Samples , 1999 .

[47]  Allan D R McQuarrie,et al.  A small-sample correction for the Schwarz SIC model selection criterion , 1999 .

[48]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[49]  G. Kitagawa,et al.  Bootstrapping Log Likelihood and EIC, an Extension of AIC , 1997 .

[50]  J. Cavanaugh Unifying the derivations for the Akaike and corrected Akaike information criteria , 1997 .

[51]  K. Ponnambalam,et al.  Estimation of reservoir yield and storage distribution using moments analysis , 1996 .

[52]  J. Shao Bootstrap Model Selection , 1996 .

[53]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[54]  Anna Clara Monti A proposal for a residual autocorrelation test in linear models , 1994 .

[55]  C. Sim,et al.  Modelling non‐normal first‐order autoregressive time series , 1994 .

[56]  W. Li,et al.  Time series models based on generalized linear models: some further results. , 1994, Biometrics.

[57]  A. Raftery,et al.  Time Series of Continuous Proportions , 1993 .

[58]  Wai Keung Li,et al.  Testing model adequacy for some Markov regression models for time series , 1991 .

[59]  P. McCullagh,et al.  Generalized Linear Models, 2nd Edn. , 1990 .

[60]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[61]  Clifford M. Hurvich,et al.  Regression and time series model selection in small samples , 1989 .

[62]  A. I. McLeod,et al.  ARMA MODELLING WITH NON-GAUSSIAN INNOVATIONS , 1988 .

[63]  D. Cox,et al.  Parameter Orthogonality and Approximate Conditional Inference , 1987 .

[64]  Mohamed Alosh,et al.  FIRST‐ORDER INTEGER‐VALUED AUTOREGRESSIVE (INAR(1)) PROCESS , 1987 .

[65]  Ed. McKenzie,et al.  SOME SIMPLE MODELS FOR DISCRETE VARIATE TIME SERIES , 1985 .

[66]  P. Kumaraswamy A generalized probability density function for double-bounded random processes , 1980 .

[67]  G. Jenkins,et al.  Time Series Analysis: Forecasting and Control , 1978 .

[68]  G. Box,et al.  On a measure of lack of fit in time series models , 1978 .

[69]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[70]  H. Akaike A new look at the statistical model identification , 1974 .

[71]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[72]  E. B. Andersen,et al.  Asymptotic Properties of Conditional Maximum‐Likelihood Estimators , 1970 .

[73]  Calyampudi R. Rao Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation , 1948, Mathematical Proceedings of the Cambridge Philosophical Society.

[74]  A. Wald Tests of statistical hypotheses concerning several parameters when the number of observations is large , 1943 .

[75]  R. Anderson Distribution of the Serial Correlation Coefficient , 1942 .

[76]  E. S. Pearson,et al.  ON THE USE AND INTERPRETATION OF CERTAIN TEST CRITERIA FOR PURPOSES OF STATISTICAL INFERENCE PART I , 1928 .

[77]  Artur J. Lemonte The Gradient Statistic , 2016 .

[78]  Lea Fleischer,et al.  In All Likelihood Statistical Modelling And Inference Using Likelihood , 2016 .

[79]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[80]  R. Mullen MODELING THE TEMPORAL AND SPATIAL VARIABILITY OF SOLAR RADIATION , 2012 .

[81]  S. Emara,et al.  Seasonal variation of fixed and volatile oil percentage of four Eucalyptus spp. related to lamina anatomy , 2011 .

[82]  Kate Smith-Miles Exploratory Data Analysis , 2011, International Encyclopedia of Statistical Science.

[83]  Abd-Krim Seghouane,et al.  Asymptotic bootstrap corrections of AIC for linear regression models , 2010, Signal Process..

[84]  José Alberto Mauricio Computing and using residuals in time series models , 2008, Comput. Stat. Data Anal..

[85]  Rob J. Hyndman,et al.  Forecasting with Exponential Smoothing , 2008 .

[86]  Mikis D. Stasinopoulos,et al.  Fitting Non-Gaussian Time Series Models , 1998, COMPSTAT.

[87]  R. Shibata BOOTSTRAP ESTIMATE OF KULLBACK-LEIBLER INFORMATION FOR MODEL SELECTION , 1997 .

[88]  J. Cavanaugh,et al.  A BOOTSTRAP VARIANT OF AIC FOR STATE-SPACE MODEL SELECTION , 1997 .

[89]  A. Swift Modeling and forecasting time series with a general non‐normal distribution , 1995 .

[90]  G. Janacek,et al.  A CLASS OF MODELS FOR NON-NORMAL TIME SERIES , 1990 .

[91]  V. Sundar,et al.  APPLICATION OF DOUBLE BOUNDED PROBABILITY DENSITY FUNCTION FOR ANALYSIS OF OCEAN WAVES , 1989 .

[92]  S. Zeger,et al.  Markov regression models for time series: a quasi-likelihood approach. , 1988, Biometrics.

[93]  B. G. Quinn,et al.  The determination of the order of an autoregression , 1979 .

[94]  N. Sugiura Further analysts of the data by akaike' s information criterion and the finite corrections , 1978 .

[95]  K. Dietz,et al.  The Incidence of Infectious Diseases under the Influence of Seasonal Fluctuations , 1976 .