Kullback-Leibler Approximation for Probability Measures on Infinite Dimensional Spaces
暂无分享,去创建一个
Gideon Simpson | H. Weber | F. J. Pinski | Andrew M. Stuart | A. Stuart | F. Pinski | H. Weber | G. Simpson | Francis J. Pinski
[1] A. Stuart,et al. Signal processing problems on function space: Bayesian formulation, stochastic PDEs and effective MCMC methods , 2011 .
[2] M. Reed,et al. Methods of Modern Mathematical Physics. 2. Fourier Analysis, Self-adjointness , 1975 .
[3] Radford M. Neal. Pattern Recognition and Machine Learning , 2007, Technometrics.
[4] Markos A. Katsoulakis,et al. COARSE-GRAINING SCHEMES AND A POSTERIORI ERROR ESTIMATES FOR STOCHASTIC LATTICE SYSTEMS , 2006, math/0608007.
[5] V. Bogachev. Gaussian Measures on a , 2022 .
[6] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[7] A. Üstünel,et al. Monge-Kantorovitch Measure Transportation and Monge-Ampère Equation on Wiener Space , 2004 .
[8] Tim Hesterberg,et al. Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.
[9] A. M. Stuart,et al. Γ-Limit for Transition Paths of Maximal Probability , 2011, 1101.3920.
[10] Andrew M. Stuart,et al. Uncertainty Quantification and Weak Approximation of an Elliptic Inverse Problem , 2011, SIAM J. Numer. Anal..
[11] C. Villani. Optimal Transport: Old and New , 2008 .
[12] M. Reed. Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .
[13] Petr Plechác,et al. Information-theoretic tools for parametrized coarse-graining of non-equilibrium extended systems , 2013, The Journal of chemical physics.
[14] Andrew J Majda,et al. Improving model fidelity and sensitivity for complex systems through empirical information theory , 2011, Proceedings of the National Academy of Sciences.
[15] Mark S. C. Reed,et al. Method of Modern Mathematical Physics , 1972 .
[16] J. Lynch,et al. A weak convergence approach to the theory of large deviations , 1997 .
[17] Gideon Simpson,et al. Algorithms for Kullback-Leibler Approximation of Probability Measures in Infinite Dimensions , 2014, SIAM J. Sci. Comput..
[18] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[19] A. Stuart,et al. MAP estimators and their consistency in Bayesian nonparametric inverse problems , 2013, 1303.4795.
[20] S. Crawford,et al. Volume 1 , 2012, Journal of Diabetes Investigation.
[21] Andrew J. Majda,et al. Quantifying the predictive skill in long-range forecasting. Part II: Model error in coarse-grained Markov models with application to ocean-circulation regimes , 2012 .
[22] J. Ball,et al. A numerical method for detecting singular minimizers , 1987 .
[23] A. M. Stuart,et al. Posterior consistency via precision operators for Bayesian nonparametric drift estimation in SDEs , 2012, 1202.0976.
[24] Kristian Kirsch,et al. Methods Of Modern Mathematical Physics , 2016 .
[25] Le Gall,et al. Mouvement brownien, martingales et calcul stochastique , 2013 .
[26] Barbara Schneider,et al. Basel , 2000 .
[27] Maurizio Dapor. Monte Carlo Strategies , 2020, Transport of Energetic Electrons in Solids.
[28] Dan Cornford,et al. Gaussian Process Approximations of Stochastic Differential Equations , 2007, Gaussian Processes in Practice.
[29] James C. Robinson,et al. Bayesian inverse problems for functions and applications to fluid mechanics , 2009 .
[30] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[31] I. Csiszár. $I$-Divergence Geometry of Probability Distributions and Minimization Problems , 1975 .
[32] J. Zabczyk,et al. Stochastic Equations in Infinite Dimensions , 2008 .
[33] R. Bass,et al. Review: P. Billingsley, Convergence of probability measures , 1971 .
[34] O. H. Lowry. Academic press. , 1972, Analytical chemistry.
[35] R. McCann. A Convexity Principle for Interacting Gases , 1997 .
[36] E. Somersalo,et al. Statistical and computational inverse problems , 2004 .
[37] Martin Hairer,et al. An Introduction to Stochastic PDEs , 2009, 0907.4178.
[38] Lea Fleischer,et al. Regularization of Inverse Problems , 1996 .
[39] Andrew J. Majda,et al. Quantifying the Predictive Skill in Long-Range Forecasting. Part I: Coarse-Grained Predictions in a Simple Ocean Model , 2012 .
[40] Dan Cornford,et al. Variational Inference for Diffusion Processes , 2007, NIPS.
[41] Michael I. Jordan,et al. Learning with Mixtures of Trees , 2001, J. Mach. Learn. Res..