Kumaraswamy autoregressive moving average models for double bounded environmental data

Abstract In this paper we introduce the Kumaraswamy autoregressive moving average models (KARMA), which is a dynamic class of models for time series taking values in the double bounded interval ( a , b ) following the Kumaraswamy distribution. The Kumaraswamy family of distribution is widely applied in many areas, especially hydrology and related fields. Classical examples are time series representing rates and proportions observed over time. In the proposed KARMA model, the median is modeled by a dynamic structure containing autoregressive and moving average terms, time-varying regressors, unknown parameters and a link function. We introduce the new class of models and discuss conditional maximum likelihood estimation, hypothesis testing inference, diagnostic analysis and forecasting. In particular, we provide closed-form expressions for the conditional score vector and conditional Fisher information matrix. An application to environmental real data is presented and discussed.

[1]  Ming De Chuang,et al.  Order series method for forecasting non-Gaussian time series , 2007 .

[2]  W. L. Lane,et al.  Applied Modeling of Hydrologic Time Series , 1997 .

[3]  Andréa V. Rocha,et al.  Beta autoregressive moving average models , 2009 .

[4]  M. Falagas,et al.  Effect of meteorological variables on the incidence of respiratory tract infections. , 2008, Respiratory medicine.

[5]  B. G. Quinn,et al.  The determination of the order of an autoregression , 1979 .

[6]  Kumaraswamy Ponnambalam,et al.  Maximization of Manufacturing Yield of Systems with Arbitrary Distributions of Component Values , 2000, Ann. Oper. Res..

[7]  David R. Maidment,et al.  Handbook of Hydrology , 1993 .

[8]  M. Tiku,et al.  Time Series Models in Non‐Normal Situations: Symmetric Innovations , 2000 .

[9]  S. Ferrari,et al.  Beta Regression for Modelling Rates and Proportions , 2004 .

[10]  Saralees Nadarajah,et al.  On the distribution of Kumaraswamy , 2008 .

[11]  Pablo A. Mitnik New Properties of the Kumaraswamy Distribution , 2008 .

[12]  Wagner Barreto-Souza,et al.  Improved estimators for a general class of beta regression models , 2008, Comput. Stat. Data Anal..

[13]  Francisco Cribari-Neto,et al.  Bartlett corrections in beta regression models , 2013, 1501.07551.

[14]  P. Kumaraswamy Sinepower probability density function , 1976 .

[15]  Bonnie K. Ray,et al.  Regression Models for Time Series Analysis , 2003, Technometrics.

[16]  K. Ponnambalam,et al.  Estimation of reservoir yield and storage distribution using moments analysis , 1996 .

[17]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[18]  Peter K. Dunn,et al.  Randomized Quantile Residuals , 1996 .

[19]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[20]  Fábio M. Bayer,et al.  Bootstrap-based inferential improvements in beta autoregressive moving average model , 2017, Commun. Stat. Simul. Comput..

[21]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[22]  Arjun K. Gupta,et al.  Handbook of beta distribution and its applications , 2004 .

[23]  C. Chatfield,et al.  Fourier Analysis of Time Series: An Introduction , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[24]  Peter Bloomfield,et al.  Fourier Analysis of Time Series: An Introduction , 1977 .

[25]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[26]  Y. Pawitan In all likelihood : statistical modelling and inference using likelihood , 2002 .

[27]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[28]  José Alberto Mauricio Computing and using residuals in time series models , 2008, Comput. Stat. Data Anal..

[29]  On the parametric approach to unit hydrograph identification , 1989 .

[30]  D. Cox,et al.  Parameter Orthogonality and Approximate Conditional Inference , 1987 .

[31]  E. Hannan The asymptotic theory of linear time-series models , 1973, Journal of Applied Probability.

[32]  F. Filiaci,et al.  Incidence of allergic rhinitis in children. , 1983, Rhinology.

[33]  Paul Newbold,et al.  Finite sample properties of estimators for autoregressive moving average models , 1980 .

[34]  G. Box,et al.  On a measure of lack of fit in time series models , 1978 .

[35]  John A. Nelder,et al.  Generalized linear models. 2nd ed. , 1993 .

[36]  Artur J. Lemonte The Gradient Statistic , 2016 .

[37]  Y. Ouyang,et al.  Incidence of allergic rhinitis and meteorological variables: Non-linear correlation and non-linear regression analysis based on Yunqi theory of chinese medicine , 2016, Chinese journal of integrative medicine.

[38]  Kumaraswamy Ponnambalam,et al.  Probabilistic design of systems with general distributions of parameters , 2001, Int. J. Circuit Theory Appl..

[39]  Gauss M. Cordeiro,et al.  The exponentiated Kumaraswamy distribution and its log-transform , 2013 .

[40]  V. Sundar,et al.  APPLICATION OF DOUBLE BOUNDED PROBABILITY DENSITY FUNCTION FOR ANALYSIS OF OCEAN WAVES , 1989 .

[41]  Artur J. Lemonte,et al.  New class of Johnson SB distributions and its associated regression model for rates and proportions , 2016, Biometrical journal. Biometrische Zeitschrift.

[42]  E. B. Andersen,et al.  Asymptotic Properties of Conditional Maximum‐Likelihood Estimators , 1970 .

[43]  A. Wald Tests of statistical hypotheses concerning several parameters when the number of observations is large , 1943 .

[44]  Tatiene C. Souza,et al.  Intelligence, religiosity and homosexuality non-acceptance: Empirical evidence , 2015 .

[45]  R. Rigby,et al.  Generalized Autoregressive Moving Average Models , 2003 .

[46]  Calyampudi R. Rao Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation , 1948, Mathematical Proceedings of the Cambridge Philosophical Society.

[47]  P. Kumaraswamy A generalized probability density function for double-bounded random processes , 1980 .

[48]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[49]  Raydonal Ospina,et al.  A general class of zero-or-one inflated beta regression models , 2011, Comput. Stat. Data Anal..

[50]  L. S. Pereira,et al.  Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .

[51]  Richard A. Davis,et al.  Time Series: Theory and Methods (2nd ed.). , 1992 .

[52]  E. S. Pearson,et al.  ON THE USE AND INTERPRETATION OF CERTAIN TEST CRITERIA FOR PURPOSES OF STATISTICAL INFERENCE PART I , 1928 .

[53]  A. K. Lohani,et al.  Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques , 2012 .

[54]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[55]  W. Collischonn,et al.  The MGB-IPH model for large-scale rainfall—runoff modelling , 2007 .

[56]  Onyedikachi O. John Robustness of Quantile Regression to Outliers , 2015 .

[57]  Gustavo H. A. Pereira,et al.  On quantile residuals in beta regression , 2017, Commun. Stat. Simul. Comput..

[58]  A. Zeileis,et al.  Beta Regression in R , 2010 .

[59]  Benjamin Kedem,et al.  Partial Likelihood Inference For Time Series Following Generalized Linear Models , 2004 .

[60]  H. Akaike A new look at the statistical model identification , 1974 .

[61]  M. C. Jones Kumaraswamy’s distribution: A beta-type distribution with some tractability advantages , 2009 .

[62]  C. Varin,et al.  Beta regression for time series analysis of bounded data, with application to Canada Google Flu Trends. , 2014, 1404.3533.

[63]  Pablo A. Mitnik,et al.  The Kumaraswamy distribution: median-dispersion re-parameterizations for regression modeling and simulation-based estimation , 2012, Statistical Papers.

[64]  K. Ponnambalam,et al.  Grain yield reliability analysis with crop water demand uncertainty , 2006 .

[65]  M. Valipour,et al.  Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir , 2013 .

[66]  Helio S. Migon,et al.  Dynamic Bayesian beta models , 2011, Comput. Stat. Data Anal..